期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
基于递归神经网络模型的传感器非线性动态补偿 被引量:9
1
作者 田社平 《上海交通大学学报》 EI CAS CSCD 北大核心 2003年第1期13-16,共4页
讨论了递归神经网络模型在传感器非线性动态补偿中的应用 ,给出了递归神经网络模型的结构及相应的训练算法 .递归神经网络模型本身具有动态映射能力 ,其结构仅与输入层和中间层的节点数有关 ,且不需要知道被补偿传感器的结构特性 (如输... 讨论了递归神经网络模型在传感器非线性动态补偿中的应用 ,给出了递归神经网络模型的结构及相应的训练算法 .递归神经网络模型本身具有动态映射能力 ,其结构仅与输入层和中间层的节点数有关 ,且不需要知道被补偿传感器的结构特性 (如输出、输入的最大延迟 )等先验知识 ,简化了动态补偿器的结构设计 .采用递推预报误差算法训练神经网络 ,具有收敛速度快、收敛精度高的特点 .实验结果表明 ,经过补偿后的传感器具有期望的输入输出特性 。 展开更多
关键词 传感器 非线性动态补偿 递归神经网络模型 网络结构 训练算法 推预报误差算法
下载PDF
油压机械臂及手系统递归神经网络建模与位置控制
2
作者 邵辉 野波健藏 《上海电机学院学报》 2012年第1期6-10,17,共6页
为解决多关节油压机械臂及手系统动态参数的时变性,应用递归神经网络(RNN)建立了油压机械臂及手的速度模型及逆模型,并用逆模型作为臂及手各关节的控制器实现了位置控制。实验结果表明,所建模型性能接近系统性能,位置控制精度也能达到... 为解决多关节油压机械臂及手系统动态参数的时变性,应用递归神经网络(RNN)建立了油压机械臂及手的速度模型及逆模型,并用逆模型作为臂及手各关节的控制器实现了位置控制。实验结果表明,所建模型性能接近系统性能,位置控制精度也能达到控制目标的要求。 展开更多
关键词 油压系统 机械臂及手 位置控制 递归神经网络模型
下载PDF
二次最小化问题的有限时间递归神经网络求解 被引量:1
3
作者 张永胜 肖林 《吉首大学学报(自然科学版)》 CAS 2019年第2期21-26,共6页
利用一类递归神经网络模型来求解二次最小化问题,在该模型的基础上加入双符号幂激励函数,以加快递归神经网络的收敛速度,甚至达到有限时间收敛.通过调节设计参数λ的取值,递归神经网络的收敛性能可进一步提高.利用MATLAB软件对有限递归... 利用一类递归神经网络模型来求解二次最小化问题,在该模型的基础上加入双符号幂激励函数,以加快递归神经网络的收敛速度,甚至达到有限时间收敛.通过调节设计参数λ的取值,递归神经网络的收敛性能可进一步提高.利用MATLAB软件对有限递归神经网络模型进行仿真,数值仿真结果验证了模型求解二次最小化问题的有效性和优越性. 展开更多
关键词 二次最小化问题 有限时间 递归神经网络模型
下载PDF
基于神经网络特征的句子级别译文质量估计 被引量:14
4
作者 陈志明 李茂西 王明文 《计算机研究与发展》 EI CSCD 北大核心 2017年第8期1804-1812,共9页
机器翻译质量估计是自然语言处理中的一个重要任务,与传统的机器翻译自动评价方法不同,译文质量估计方法评估机器译文的质量不使用人工参考译文.针对目前句子级别机器译文质量估计特征提取严重依赖语言学分析导致泛化能力不足,并且制约... 机器翻译质量估计是自然语言处理中的一个重要任务,与传统的机器翻译自动评价方法不同,译文质量估计方法评估机器译文的质量不使用人工参考译文.针对目前句子级别机器译文质量估计特征提取严重依赖语言学分析导致泛化能力不足,并且制约着后续支持向量回归算法的性能,提出了利用深度学习中上下文单词预测模型和矩阵分解模型提取句子向量特征,并将其与递归神经网络语言模型特征相结合来提高译文质量自动估计与人工评价的相关性.在WMT15和WMT16译文质量估计子任务数据集上的实验结果表明:利用上下文单词预测模型提取句子向量特征的方法性能统计一致地优于传统的QuEst方法和连续空间语言模型句子向量特征提取方法,这揭示了提出的特征提取方法不仅不需要语言学分析,而且显著地提高了译文质量估计的效果. 展开更多
关键词 机器翻译质量估计 句子级别 词向量 归神经网络语言模型 支持向量回归
下载PDF
Dynamics Analysis for Generic Projection Continuous-Time RNNs with Bounded Matrices 被引量:2
5
作者 QIAO Chen LIANG Dong SUN Kefeng 《Journal of Systems Science & Complexity》 SCIE EI CSCD 2015年第4期799-812,共14页
The dynamics anMysis of recurrent neural networks (RNNs) is a first and necessary step for any practical applications of them. In the present paper, the easily verified theorem is found to ascertain the asymptotical... The dynamics anMysis of recurrent neural networks (RNNs) is a first and necessary step for any practical applications of them. In the present paper, the easily verified theorem is found to ascertain the asymptotical stability for generic RNN model with projection mapping under the critical condition that a discriminant matrix defined by the networks is semi-positive definite. The results given here not only improve deeply upon the existing relevant critical as well as non-critical dynamics conclusions in literature, but also can be used in the practical application of RNNs directly. 展开更多
关键词 Bounded matrices critical condition dynamics analysis recurrent neural network.
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部