Based on analyzing the limitations of the commonly used back-propagation neural network (BPNN), a wavelet neural network (WNN) is adopted as the nonlinear river channel flood forecasting method replacing the BPNN....Based on analyzing the limitations of the commonly used back-propagation neural network (BPNN), a wavelet neural network (WNN) is adopted as the nonlinear river channel flood forecasting method replacing the BPNN. The WNN has the characteristics of fast convergence and improved capability of nonlinear approximation. For the purpose of adapting the timevarying characteristics of flood routing, the WNN is coupled with an AR real-time correction model. The AR model is utilized to calculate the forecast error. The coefficients of the AR real-time correction model are dynamically updated by an adaptive fading factor recursive least square(RLS) method. The application of the flood forecasting method in the cross section of Xijiang River at Gaoyao shows its effectiveness.展开更多
The dynamics anMysis of recurrent neural networks (RNNs) is a first and necessary step for any practical applications of them. In the present paper, the easily verified theorem is found to ascertain the asymptotical...The dynamics anMysis of recurrent neural networks (RNNs) is a first and necessary step for any practical applications of them. In the present paper, the easily verified theorem is found to ascertain the asymptotical stability for generic RNN model with projection mapping under the critical condition that a discriminant matrix defined by the networks is semi-positive definite. The results given here not only improve deeply upon the existing relevant critical as well as non-critical dynamics conclusions in literature, but also can be used in the practical application of RNNs directly.展开更多
基金The National Natural Science Foundation of China(No.50479017).
文摘Based on analyzing the limitations of the commonly used back-propagation neural network (BPNN), a wavelet neural network (WNN) is adopted as the nonlinear river channel flood forecasting method replacing the BPNN. The WNN has the characteristics of fast convergence and improved capability of nonlinear approximation. For the purpose of adapting the timevarying characteristics of flood routing, the WNN is coupled with an AR real-time correction model. The AR model is utilized to calculate the forecast error. The coefficients of the AR real-time correction model are dynamically updated by an adaptive fading factor recursive least square(RLS) method. The application of the flood forecasting method in the cross section of Xijiang River at Gaoyao shows its effectiveness.
基金supported by the National Nature Science Foundation of China under Grant Nos.11101327,11471006,and 11171270the National Basic Research Program of China(973 Program)under Grant No.2013C13329406the Fundamental Research Funds for the Central Universities under Grant Nos.xjj20100087 and 2011jdhz30
文摘The dynamics anMysis of recurrent neural networks (RNNs) is a first and necessary step for any practical applications of them. In the present paper, the easily verified theorem is found to ascertain the asymptotical stability for generic RNN model with projection mapping under the critical condition that a discriminant matrix defined by the networks is semi-positive definite. The results given here not only improve deeply upon the existing relevant critical as well as non-critical dynamics conclusions in literature, but also can be used in the practical application of RNNs directly.