锂电池荷电状态(state of charge,SOC)的准确估计依赖于精确的锂电池模型参数。在采用带遗忘因子的递推最小二乘法(forgetting factor recursive least square,FFRLS)对锂电池等效电路模型进行参数辨识时,迭代初始值选取不当会造成辨识...锂电池荷电状态(state of charge,SOC)的准确估计依赖于精确的锂电池模型参数。在采用带遗忘因子的递推最小二乘法(forgetting factor recursive least square,FFRLS)对锂电池等效电路模型进行参数辨识时,迭代初始值选取不当会造成辨识精度低、收敛速度慢的问题。为此,将电路分析法与FFRLS相结合,提出基于改进初值带遗忘因子的递推最小二乘法(improved initial value-FFRLS,IIV-FFRLS)。首先,通过离线辨识得到各荷电状态点对应的等效电路模型参数并进行多项式拟合;然后,利用初始开路电压(open circuit voltage,OCV)和OCV-SOC曲线获得初始SOC,代入参数拟合函数得到初始参数;最后,将初始参数带入递推公式得到IIV-FFRLS迭代初始值。对4种锂电池工况进行参数辨识,结果表明:与传统方法相比,IIV-FFRLS的平均相对误差、收敛时间分别减小58%、23%以上;IIV-FFRLS具有更高的辨识精度与更快的收敛速度。展开更多
针对风洞试验模型系统辨识不准确的问题,利用自适应LMS(least mean square)滤波器模型对跨声速风洞模型进行系统辨识。由于实测信号中存在多模态耦合,为了提高系统辨识精准度,首先对输入输出信号作了FRF(frequency response analysis)...针对风洞试验模型系统辨识不准确的问题,利用自适应LMS(least mean square)滤波器模型对跨声速风洞模型进行系统辨识。由于实测信号中存在多模态耦合,为了提高系统辨识精准度,首先对输入输出信号作了FRF(frequency response analysis)分析得到试验模型俯仰方向前两阶模态,其次利用快速Fourier变换进行模态解耦,接着利用自适应LMS滤波器模型、传递函数模型、多项式模型对俯仰方向单模态进行系统辨识,最后得到了基于自适应LMS滤波器模型的俯仰方向一阶、二阶模态滤波器系数。通过对比不同数学模型的输出与输入之间的相关系数和均方误差及辨识结果,表明自适应LMS滤波器模型具有更高的系统辨识精准度和更简洁的数学模型结构。为后续风洞试验模型振动主动控制计算法的设计提供有力支撑。展开更多
文摘针对风洞试验模型系统辨识不准确的问题,利用自适应LMS(least mean square)滤波器模型对跨声速风洞模型进行系统辨识。由于实测信号中存在多模态耦合,为了提高系统辨识精准度,首先对输入输出信号作了FRF(frequency response analysis)分析得到试验模型俯仰方向前两阶模态,其次利用快速Fourier变换进行模态解耦,接着利用自适应LMS滤波器模型、传递函数模型、多项式模型对俯仰方向单模态进行系统辨识,最后得到了基于自适应LMS滤波器模型的俯仰方向一阶、二阶模态滤波器系数。通过对比不同数学模型的输出与输入之间的相关系数和均方误差及辨识结果,表明自适应LMS滤波器模型具有更高的系统辨识精准度和更简洁的数学模型结构。为后续风洞试验模型振动主动控制计算法的设计提供有力支撑。