The field of nanomedicine in controlled drug delivery systems, especially for tumor targeting, has tremendously progressed over the past decades because of its plentiful benefits, such as biocompatibility, stability i...The field of nanomedicine in controlled drug delivery systems, especially for tumor targeting, has tremendously progressed over the past decades because of its plentiful benefits, such as biocompatibility, stability in blood circulation, and ability to reduce side effects. Although a large number of relevant papers are published every year, few nanodrugs are available for clinical treatment. The present review aimed to explore the barriers in nanomedicine delivery and tumor targeting. Rational design of nanomedicine should consider not only tumor heterogeneity, in vivo metabolism, and physicochemical properties, but also more efficient innovations in particulate formulations for clinical application.展开更多
基金Liaoning Provincial Department of Education Innovative Talents Support Project (Grant No. LR2017065)the Shenyang Science and Technology Program of China (Grant No. F16-205-1-44)the Shenyang Science and Technology Program of China (Grant No. Z17-5-078)。
文摘The field of nanomedicine in controlled drug delivery systems, especially for tumor targeting, has tremendously progressed over the past decades because of its plentiful benefits, such as biocompatibility, stability in blood circulation, and ability to reduce side effects. Although a large number of relevant papers are published every year, few nanodrugs are available for clinical treatment. The present review aimed to explore the barriers in nanomedicine delivery and tumor targeting. Rational design of nanomedicine should consider not only tumor heterogeneity, in vivo metabolism, and physicochemical properties, but also more efficient innovations in particulate formulations for clinical application.