Interpretative structural model(ISM) can transform a multivariate problem into several sub-variable problems to analyze a complex industrial structure in a more efficient way by building a multi-level hierarchical str...Interpretative structural model(ISM) can transform a multivariate problem into several sub-variable problems to analyze a complex industrial structure in a more efficient way by building a multi-level hierarchical structure model. To build an ISM of a production system, the partial correlation coefficient method is proposed to obtain the adjacency matrix, which can be transformed to ISM. According to estimation of correlation coefficient, the result can give actual variable correlations and eliminate effects of intermediate variables. Furthermore, this paper proposes an effective approach using ISM to analyze the main factors and basic mechanisms that affect the energy consumption in an ethylene production system. The case study shows that the proposed energy consumption analysis method is valid and efficient in improvement of energy efficiency in ethylene production.展开更多
In this paper,a two-layer hierarchical structure of optimization and control for polypropylene grade transition was raised to overcome process uncertain disturbances that led to the large deviation between the open-lo...In this paper,a two-layer hierarchical structure of optimization and control for polypropylene grade transition was raised to overcome process uncertain disturbances that led to the large deviation between the open-loop reference trajectory and the actual process.In the upper layer,the variant time scale based control vector parametric methods(VTS-CVP) was used for dynamic optimization of transition reference trajectory,while nonlinear model predictive controller(NMPC) based on closed-loop subspace and piece-wise linear(SSARX-PWL) model in the lower layer was tracking to the reference trajectory from the upper layer for overcoming high-frequency disturbances.Besides,mechanism about trajectory deviation detection and optimal trajectory updating online were introduced to ensure a smooth transition for the entire process.The proposed method was validated with the real data from an industrial double-loop propylene polymerization reaction process with developed dynamic mechanism mathematical model.展开更多
基金Supported by the National Natural Science Foundation of China(61374166,6153303)the Doctoral Fund of Ministry of Education of China(20120010110010)the Fundamental Research Funds for the Central Universities(YS1404,JD1413,ZY1502)
文摘Interpretative structural model(ISM) can transform a multivariate problem into several sub-variable problems to analyze a complex industrial structure in a more efficient way by building a multi-level hierarchical structure model. To build an ISM of a production system, the partial correlation coefficient method is proposed to obtain the adjacency matrix, which can be transformed to ISM. According to estimation of correlation coefficient, the result can give actual variable correlations and eliminate effects of intermediate variables. Furthermore, this paper proposes an effective approach using ISM to analyze the main factors and basic mechanisms that affect the energy consumption in an ethylene production system. The case study shows that the proposed energy consumption analysis method is valid and efficient in improvement of energy efficiency in ethylene production.
基金Supported by the Electronic Information Industry Development Foundation of China(20140806)the National Natural Science Foundation of China(61374121,61134007)
文摘In this paper,a two-layer hierarchical structure of optimization and control for polypropylene grade transition was raised to overcome process uncertain disturbances that led to the large deviation between the open-loop reference trajectory and the actual process.In the upper layer,the variant time scale based control vector parametric methods(VTS-CVP) was used for dynamic optimization of transition reference trajectory,while nonlinear model predictive controller(NMPC) based on closed-loop subspace and piece-wise linear(SSARX-PWL) model in the lower layer was tracking to the reference trajectory from the upper layer for overcoming high-frequency disturbances.Besides,mechanism about trajectory deviation detection and optimal trajectory updating online were introduced to ensure a smooth transition for the entire process.The proposed method was validated with the real data from an industrial double-loop propylene polymerization reaction process with developed dynamic mechanism mathematical model.