With the rapid development of urban rail transit,there have been an urgent problem of excessive stray current.Because the stray current distribution is random and difficult to verify in the field,we designed an improv...With the rapid development of urban rail transit,there have been an urgent problem of excessive stray current.Because the stray current distribution is random and difficult to verify in the field,we designed an improved stray current experimental platform by replacing the simulated aqueous solution with a real soil environment and by calculating the transition resistance by measuring the soil resistivity,which makes up for the defects in the previous references.Firstly,the mathematical models of rail-drainage net and rail-drainage netground were established,and the analytical expressions of current and voltage of rail,drainage net and other structures were derived.In addition,the simulation model was built,and the mathematical analysis results were compared with the simulation results.Secondly,the accuracy of the improved stray current experimental platform was verified by comparing the measured and simulation results.Finally,based on the experimental results,the influence factors of stray current were analyzed.The relevant conclusions provide experimental data and theoretical reference for the study of stray current in urban rail transit.展开更多
Traffic flow forecasting is an important part of elevator group control system (EGCS).This paper applies time series prediction theories based on neural networks(NN) to EGCSs traffic analysis,and establishes a time se...Traffic flow forecasting is an important part of elevator group control system (EGCS).This paper applies time series prediction theories based on neural networks(NN) to EGCSs traffic analysis,and establishes a time series NN traffic flow forecasting model.Simulation results show its validity.展开更多
This paper reports a study concerning occurrence and growth of traffic jam in a harbor tunnel. The single-lane with three sections (downgrade, fiat, and upgrade) is taken into account and they are characterized with...This paper reports a study concerning occurrence and growth of traffic jam in a harbor tunnel. The single-lane with three sections (downgrade, fiat, and upgrade) is taken into account and they are characterized with different velocity limit. At the low density, the traffic current increases linearly with density and saturates at some values of immediately density. As the density increases, the traffic jam appears firstly before the upgrade section and then extends to the downgrade section. Additionally, the relationships of the velocity and headway against position in different densities are obta/ned from simulation. These results clearly clarify where and when the traffic jam appears. Finally, the critical densities are derived via the theoretical analysis before and after the discontinuous fronts and the theoretical results are consistent with the critical values of simulation results.展开更多
In order to explore the influence of soil resistivity on stray current in power supply system of urban rail transit,we establish an equivalent circuit model of the rail-to-ground structure based on resistance network ...In order to explore the influence of soil resistivity on stray current in power supply system of urban rail transit,we establish an equivalent circuit model of the rail-to-ground structure based on resistance network method first.After measuring the soil resistivity of a real subway system,a simulation model is established in Matlab to obtain the stray currents at different soil resistivities.Then the influence of soil resistivity on stray current is analyzed.Afterwards,to verify the rationality and reliability of the simulation model,we design a test circuit to measure the stray current and rail-to-ground voltage in a real subway system,and a comparison of the experimentally measured results and simulation results is presented.The results show that the stray current is the maximum when the soil resistivity is 211.57Ω·m;when the soil resistivity is 768.47Ω·m,the stray current is the minimum,that is,the smaller the soil resistivity,the greater the stray current.Therefore,the resistivity should be increased as much as possible when ramming the track foundation in urban rail transit system.展开更多
The traffic-induced vibrations of the new CCTV Headquarters building are studied stages. In the first stage when the through experiments in two 30th floor of the northwest tower and the 38th floor of the southeast tow...The traffic-induced vibrations of the new CCTV Headquarters building are studied stages. In the first stage when the through experiments in two 30th floor of the northwest tower and the 38th floor of the southeast tower were finished, the traffic flows on the roads surrounding the building were investigated, and 27 setups of accelerations were measured at the roadside, on the pile cap and on the 9th floor. In the second stage when the whole steel structure was completed, l 5 setups of accelerations were measured at the roadside, on the pile cap and on the 37th and the 48th floors. The accelerations of the building under different traffic flows, in different positions are analyzed in both time domain and frequency domain. The damping ratios are estimated by the upgraded half-power bandwidth method.展开更多
In this paper,we study the motion course of traffic flow on the slopes of a highway by applying a microscopic traffic model,which takes into account the next-nearest-neighbor interaction in an intelligent transportati...In this paper,we study the motion course of traffic flow on the slopes of a highway by applying a microscopic traffic model,which takes into account the next-nearest-neighbor interaction in an intelligent transportation system environment.Three common gradients of the highway,which are sag terrain,uphill terrain,and downhill terrain on a single-lane roadway,are selected to clarify the impact on the traffic flow by the next-nearest-neighbor interaction in relative velocity.We obtain the current-density relation for traffic flow on the sag,the uphill and the downhill under the next-nearest-neighbor interaction strategy.It is observed that the current saturates when the density is greater than a critical value and the current decreases when the density is greater than another critical value.When the density falls into the intermediate range between the two critical densities it is also found that the oscillatory jam,easily leads to traffic accidents,often appears in the downhill stage,and the next-nearest-neighbor interaction in relative velocity has a strong suppressing effect on this kind of dangerous congestion.A theoretical analysis is also presented to explain this important conclusion.展开更多
基金supported by National Natural Science Foundation of China(Nos.51476073,51266004)Natural Science Foundation of Gansu Province(No.138RJZA199).
文摘With the rapid development of urban rail transit,there have been an urgent problem of excessive stray current.Because the stray current distribution is random and difficult to verify in the field,we designed an improved stray current experimental platform by replacing the simulated aqueous solution with a real soil environment and by calculating the transition resistance by measuring the soil resistivity,which makes up for the defects in the previous references.Firstly,the mathematical models of rail-drainage net and rail-drainage netground were established,and the analytical expressions of current and voltage of rail,drainage net and other structures were derived.In addition,the simulation model was built,and the mathematical analysis results were compared with the simulation results.Secondly,the accuracy of the improved stray current experimental platform was verified by comparing the measured and simulation results.Finally,based on the experimental results,the influence factors of stray current were analyzed.The relevant conclusions provide experimental data and theoretical reference for the study of stray current in urban rail transit.
文摘Traffic flow forecasting is an important part of elevator group control system (EGCS).This paper applies time series prediction theories based on neural networks(NN) to EGCSs traffic analysis,and establishes a time series NN traffic flow forecasting model.Simulation results show its validity.
基金Supported by Research Grants from City University of Hong Kong,HKSAR under Grant No.CityU-SRG 7002684Science&Technology Program of Shanghai Maritime University under Grant No.20110046+1 种基金Shanghai Municipal Natural Science Foundation under Grant No.10190502500National Natural Science Foundation of China under Grant Nos.11172164,71101088 and 71171129
文摘This paper reports a study concerning occurrence and growth of traffic jam in a harbor tunnel. The single-lane with three sections (downgrade, fiat, and upgrade) is taken into account and they are characterized with different velocity limit. At the low density, the traffic current increases linearly with density and saturates at some values of immediately density. As the density increases, the traffic jam appears firstly before the upgrade section and then extends to the downgrade section. Additionally, the relationships of the velocity and headway against position in different densities are obta/ned from simulation. These results clearly clarify where and when the traffic jam appears. Finally, the critical densities are derived via the theoretical analysis before and after the discontinuous fronts and the theoretical results are consistent with the critical values of simulation results.
基金National Natural Science Foundation of China(Nos.51476073,51266004)Natural Science Foundation of Gansu Province(No.1308RJZA199)。
文摘In order to explore the influence of soil resistivity on stray current in power supply system of urban rail transit,we establish an equivalent circuit model of the rail-to-ground structure based on resistance network method first.After measuring the soil resistivity of a real subway system,a simulation model is established in Matlab to obtain the stray currents at different soil resistivities.Then the influence of soil resistivity on stray current is analyzed.Afterwards,to verify the rationality and reliability of the simulation model,we design a test circuit to measure the stray current and rail-to-ground voltage in a real subway system,and a comparison of the experimentally measured results and simulation results is presented.The results show that the stray current is the maximum when the soil resistivity is 211.57Ω·m;when the soil resistivity is 768.47Ω·m,the stray current is the minimum,that is,the smaller the soil resistivity,the greater the stray current.Therefore,the resistivity should be increased as much as possible when ramming the track foundation in urban rail transit system.
基金The study is sponsored by the National Natural Science Foundation of China (No. 50538010) and the Flander (Belgium)-China Bilateral Project (,No. BIL 07/07).
文摘The traffic-induced vibrations of the new CCTV Headquarters building are studied stages. In the first stage when the through experiments in two 30th floor of the northwest tower and the 38th floor of the southeast tower were finished, the traffic flows on the roads surrounding the building were investigated, and 27 setups of accelerations were measured at the roadside, on the pile cap and on the 9th floor. In the second stage when the whole steel structure was completed, l 5 setups of accelerations were measured at the roadside, on the pile cap and on the 37th and the 48th floors. The accelerations of the building under different traffic flows, in different positions are analyzed in both time domain and frequency domain. The damping ratios are estimated by the upgraded half-power bandwidth method.
基金Supported by the Natural Science Foundation of China under Grant No.60904068,Natural Science Foundation of China under Grant No.10902076,Natural Science Foundation of China under Grant No.11072117,Natural Science Foundation of China under Grant No.61004113the Fundamental Research Funds for the Central Universities under Grant No.0800219198
文摘In this paper,we study the motion course of traffic flow on the slopes of a highway by applying a microscopic traffic model,which takes into account the next-nearest-neighbor interaction in an intelligent transportation system environment.Three common gradients of the highway,which are sag terrain,uphill terrain,and downhill terrain on a single-lane roadway,are selected to clarify the impact on the traffic flow by the next-nearest-neighbor interaction in relative velocity.We obtain the current-density relation for traffic flow on the sag,the uphill and the downhill under the next-nearest-neighbor interaction strategy.It is observed that the current saturates when the density is greater than a critical value and the current decreases when the density is greater than another critical value.When the density falls into the intermediate range between the two critical densities it is also found that the oscillatory jam,easily leads to traffic accidents,often appears in the downhill stage,and the next-nearest-neighbor interaction in relative velocity has a strong suppressing effect on this kind of dangerous congestion.A theoretical analysis is also presented to explain this important conclusion.