In this paper, we present a peculiar tripartite entangled state that is inequivalent to both the GHZ state and the W state, and then propose to implement efficient quantum information processing such as quantum dense ...In this paper, we present a peculiar tripartite entangled state that is inequivalent to both the GHZ state and the W state, and then propose to implement efficient quantum information processing such as quantum dense coding and teleportation with this entangled state in cavity QED. In this scheme the atoms interact with a highly detuned cavity field with the assistance of a strong classical driven field. It does not require the transfer of quantum information between the atomic system and the cavity, and then our scheme is insensitive to both the cavity decay and the thermal field.展开更多
A quantum secure direct communication scheme using dense coding is proposed.At first,the sender (Alice)prepares four-particle genuine entangled states and shares them with the receiver (Bob) by sending two particles i...A quantum secure direct communication scheme using dense coding is proposed.At first,the sender (Alice)prepares four-particle genuine entangled states and shares them with the receiver (Bob) by sending two particles in eachentangled state to him.Secondly,Alice encodes secret information by performing the unitary transformations on herparticles and transmits them to Bob.Finally,Bob performs the joint measurements on his particles to decode the secretinformation.The two-step security test guarantees the security of communication.展开更多
A quantum secure direct communication protocol over a collective rotating channel is proposed. The protocol encodes logical bits in noiseless subspaces, and so it can function over a quantum channel subjected to an ar...A quantum secure direct communication protocol over a collective rotating channel is proposed. The protocol encodes logical bits in noiseless subspaces, and so it can function over a quantum channel subjected to an arbitrary degree of collective rotating noise. Although entangled states are used, both the sender and receiver are only required to perform single-particle product measurement or Pauli operations. The protocol is feasible with present-day technique.展开更多
To meet the requirement of high tracking angular accuracy for the acquisition, tracking, and pointing (ATP) subsystem of the free-space optical communication, and provide the basis for the further optical communicatio...To meet the requirement of high tracking angular accuracy for the acquisition, tracking, and pointing (ATP) subsystem of the free-space optical communication, and provide the basis for the further optical communication between maritime mobile platforms, the experimental system, which executing part for the fine tracking is voice coil motor with high frequency and good performance for error compensation, is established, and the whole system can be controlled by personal computer. A series of experiments has been done for the simulation target of different uniform speed, and the data of tracking error for fine tracking and coarse tracking are collected, analyzed and evaluateds separately, and the real-time optical power of communication laser is also collected. The result shows that standard deviation for ATP system tracking error increases with the increase of target speed, while the range of tracking error appears to be no order. Furthermore, communication link can be hold for a long time.展开更多
This work presents two robust quantum secure communication schemes with authentication based on Einstein-Podolsky-Rosen(EPR) pairs, which can withstand collective noises. Two users previously share an identity string ...This work presents two robust quantum secure communication schemes with authentication based on Einstein-Podolsky-Rosen(EPR) pairs, which can withstand collective noises. Two users previously share an identity string representing their identities. The identity string is encoded as decoherence-free states(termed logical qubits), respectively, over the two collective noisy channels, which are used as decoy photons. By using the decoy photons, both the authentication of two users and the detection of eavesdropping were implemented. The use of logical qubits not only guaranteed the high fidelity of exchanged secret message, but also prevented the eavesdroppers to eavesdrop beneath a mask of noise.展开更多
We present two robust quantum secure direct communication (QSDC) schemes with a quantum one-time pad over a collective-noise channel. Each logical qubit is made up of two physical qubits and it is invariant over a col...We present two robust quantum secure direct communication (QSDC) schemes with a quantum one-time pad over a collective-noise channel. Each logical qubit is made up of two physical qubits and it is invariant over a collective-noise channel. The two photons in each logical qubit can be produced with a practically entangled source, i.e., a parametric down-conversion source with a beta barium borate crystal and a pump pulse of ultraviolet light. The information is encoded on each logical qubit with two logical unitary operations, which will not destroy the antinoise feather of the quantum systems. The receiver Bob can read out the sender's message directly with two single-photon measurements on each logical qubit, instead of Bell-state measurements, which will make these protocols more convenient in a practical application. With current technology, our two robust QSDC schemes are feasible and may be optimal ones.展开更多
This work proposes two fault tolerant quantum secure direct communication (QSDC) protocols which are robust against two kinds of collective noises: the collective-dephasing noises and the collective-rotation noises...This work proposes two fault tolerant quantum secure direct communication (QSDC) protocols which are robust against two kinds of collective noises: the collective-dephasing noises and the collective-rotation noises, respectively. The two QSDC protocols are constructed from four-qubit DF states which consist of two logical qubits. The receiver simply performs two Bell state measurements (rather than four-qubit joint measurements) to obtain the secret message. The protocols have qubit efficiency twice that of the other corresponding fault tolerant QSDC protocols. Furthermore, the proposed protocols are free from Trojan horse attacks.展开更多
文摘In this paper, we present a peculiar tripartite entangled state that is inequivalent to both the GHZ state and the W state, and then propose to implement efficient quantum information processing such as quantum dense coding and teleportation with this entangled state in cavity QED. In this scheme the atoms interact with a highly detuned cavity field with the assistance of a strong classical driven field. It does not require the transfer of quantum information between the atomic system and the cavity, and then our scheme is insensitive to both the cavity decay and the thermal field.
基金Supported by the National Natural Science Foundation of China under Grant No.10704011the Research Programs of the Educational Office of Liaoning Province under Grant No.2008006
文摘A quantum secure direct communication scheme using dense coding is proposed.At first,the sender (Alice)prepares four-particle genuine entangled states and shares them with the receiver (Bob) by sending two particles in eachentangled state to him.Secondly,Alice encodes secret information by performing the unitary transformations on herparticles and transmits them to Bob.Finally,Bob performs the joint measurements on his particles to decode the secretinformation.The two-step security test guarantees the security of communication.
基金Supported by National Natural Science Foundation of China under Grant Nos. 60873191, 60903152, and 60821001SRFDP under Grant No. 200800131016+3 种基金Beijing Nova Program under Grant No. 2008B51Key Project of Chinese Ministry of Education under Grant No. 109014China Postdoctoral Science Foundation under Grant No. 20090450018the Beijing Natural Science Foundation under Grant No. 4072020
文摘A quantum secure direct communication protocol over a collective rotating channel is proposed. The protocol encodes logical bits in noiseless subspaces, and so it can function over a quantum channel subjected to an arbitrary degree of collective rotating noise. Although entangled states are used, both the sender and receiver are only required to perform single-particle product measurement or Pauli operations. The protocol is feasible with present-day technique.
基金supported by the Natural Science foundation of Hubei Province (No.2010CDB08502)
文摘To meet the requirement of high tracking angular accuracy for the acquisition, tracking, and pointing (ATP) subsystem of the free-space optical communication, and provide the basis for the further optical communication between maritime mobile platforms, the experimental system, which executing part for the fine tracking is voice coil motor with high frequency and good performance for error compensation, is established, and the whole system can be controlled by personal computer. A series of experiments has been done for the simulation target of different uniform speed, and the data of tracking error for fine tracking and coarse tracking are collected, analyzed and evaluateds separately, and the real-time optical power of communication laser is also collected. The result shows that standard deviation for ATP system tracking error increases with the increase of target speed, while the range of tracking error appears to be no order. Furthermore, communication link can be hold for a long time.
基金supported by the Science and Technology Support Project of Sichuan Province of China(Grant No.2013GZX0137)the Fund for Young Persons Project of Sichuan Province of China(Grant No.12ZB017)+2 种基金the National Natural Science Foundation of China(Grant No.61100205)the Project of the Fundamental Research Funds for the Central Universities of China(Grant No.2013RC0307)the Cryptography Basic Development of the National"Twelfth Five-Year Plan" of China on Cryptographic Theory(Grant No.MMJJ201301004)
文摘This work presents two robust quantum secure communication schemes with authentication based on Einstein-Podolsky-Rosen(EPR) pairs, which can withstand collective noises. Two users previously share an identity string representing their identities. The identity string is encoded as decoherence-free states(termed logical qubits), respectively, over the two collective noisy channels, which are used as decoy photons. By using the decoy photons, both the authentication of two users and the detection of eavesdropping were implemented. The use of logical qubits not only guaranteed the high fidelity of exchanged secret message, but also prevented the eavesdroppers to eavesdrop beneath a mask of noise.
基金supported by the Natural Science Foundation of Jiangsu Provincial Universities (Grant No. 10KJB180004)the National Natural Science Foundation of China (Grant No. 10847147)
文摘We present two robust quantum secure direct communication (QSDC) schemes with a quantum one-time pad over a collective-noise channel. Each logical qubit is made up of two physical qubits and it is invariant over a collective-noise channel. The two photons in each logical qubit can be produced with a practically entangled source, i.e., a parametric down-conversion source with a beta barium borate crystal and a pump pulse of ultraviolet light. The information is encoded on each logical qubit with two logical unitary operations, which will not destroy the antinoise feather of the quantum systems. The receiver Bob can read out the sender's message directly with two single-photon measurements on each logical qubit, instead of Bell-state measurements, which will make these protocols more convenient in a practical application. With current technology, our two robust QSDC schemes are feasible and may be optimal ones.
基金supported by the National Science Council, Taiwan, China (Grant No. NSC98-2221-E-006-097-MY3)
文摘This work proposes two fault tolerant quantum secure direct communication (QSDC) protocols which are robust against two kinds of collective noises: the collective-dephasing noises and the collective-rotation noises, respectively. The two QSDC protocols are constructed from four-qubit DF states which consist of two logical qubits. The receiver simply performs two Bell state measurements (rather than four-qubit joint measurements) to obtain the secret message. The protocols have qubit efficiency twice that of the other corresponding fault tolerant QSDC protocols. Furthermore, the proposed protocols are free from Trojan horse attacks.