Using the simple inverse Fourier transformation(FT), the index modulation structure with the sampled period for the sampled fiber Bragg gratings was designed. In this method, the enable channels are operated at identi...Using the simple inverse Fourier transformation(FT), the index modulation structure with the sampled period for the sampled fiber Bragg gratings was designed. In this method, the enable channels are operated at identical wavelength while the unable channels are almost suppressed completely. The enable and unable channels can be established based on the applications. This technique is very useful to design the optical devices such as optical add and drop multiplexers (OADMs), and interleavers with dispersion and dispersion slope compensation.展开更多
Multiwavelength chirped fiber Bragg grating (MCFBG) is a more valuable approach to chromatic dispersion compensation. And adjusting the structure of FBG will optimize the performance of dispersion compensator in 8...Multiwavelength chirped fiber Bragg grating (MCFBG) is a more valuable approach to chromatic dispersion compensation. And adjusting the structure of FBG will optimize the performance of dispersion compensator in 8×10 Gb/s DWDM network, which is proved by simulating calculation.展开更多
文摘Using the simple inverse Fourier transformation(FT), the index modulation structure with the sampled period for the sampled fiber Bragg gratings was designed. In this method, the enable channels are operated at identical wavelength while the unable channels are almost suppressed completely. The enable and unable channels can be established based on the applications. This technique is very useful to design the optical devices such as optical add and drop multiplexers (OADMs), and interleavers with dispersion and dispersion slope compensation.
文摘Multiwavelength chirped fiber Bragg grating (MCFBG) is a more valuable approach to chromatic dispersion compensation. And adjusting the structure of FBG will optimize the performance of dispersion compensator in 8×10 Gb/s DWDM network, which is proved by simulating calculation.