The architecture of cislunar multi-hop communication networks, which focuses on the requirements of lunar full-coverage and continuous cislunar communications, is presented on the basis of Geosynchronous Orbit (GEO) s...The architecture of cislunar multi-hop communication networks, which focuses on the requirements of lunar full-coverage and continuous cislunar communications, is presented on the basis of Geosynchronous Orbit (GEO) satellite network relays. According to the geographical distribution of the forthcoming Chinese Deep Space Measuring and Controlling Network (DSMCN), two networking schemes are proposed and two elevation angle optimization models are established for locating GEO relay satellites. To analyze the dynamic connectivity, a dynamic network model is constructed with respect to the time-varying characteristics of cislunar trunk links. The advantages of the two proposed schemes, in terms of the Connectivity Rate (CR), Interruption Frequency (IF), and Average Length of Connecting Duration (ALCD), are corroborated by several simulations. In the case of the lunar polar orbit constellation case, the gains in the performance of scheme I are observed to be 134.55%, 117.03%, and 217.47% compared with DSMCN for three evaluation indicators, and the gains in the performance of scheme II are observed to be 238. 22%, 240.40%, and 572.71%. The results validate that the connectivity of GEO satellites outperforms that of earth facilities significantly and schemes based on GEO satellite relays are promising options for cislunar multi-hop communication networking.展开更多
The mainstream approaches to green networking are discussed first from the view of engineering,including resource consolidation,server virtualization,selective connectedness,and proportional computing.A brief introduc...The mainstream approaches to green networking are discussed first from the view of engineering,including resource consolidation,server virtualization,selective connectedness,and proportional computing.A brief introduction to network virtualization techniques is given then and a virtual node embedding approach is provided.Finally,three kinds of enhanced green networking schemes by network virtualization are proposed,that is enhancement to sever virtualization,resource consolidation and Adaptive Link Rate(ALR).Examples are included to show the virtue of network virtualization to green networking in terms of energy efficient communications.展开更多
The human brain is built to process complex visual impressions within milliseconds. In comparison with sequentially coded spoken language and written texts, we are capable of consuming graphical information at a high ...The human brain is built to process complex visual impressions within milliseconds. In comparison with sequentially coded spoken language and written texts, we are capable of consuming graphical information at a high bandwidth in a parallel fashion, producing a picture worth more than a thousand words. Effective information visualization can be a powerful tool to capture people's attention and quickly communicate large amounts of data and complex information. This is particularly important in the context of communication data, which often describes entities (people, organizations) and their connections through communication. Visual analytics approaches can optimize the user-computer interaction to gain insights into communication networks and learn about their structures. Network visualization is a perfect instrument to better communicate the results of analysis. The precondition for effective information visualization and successful visual reasoning is the capability to draw "good" pictures. Even though communication networks are often large, including thousands or even millions of people, underlying visualization principles are identical to those used for visualizing smaller networks. In this article, you will learn about these principles, giving you the ability to assess the quality of network visualizations and to draw better network pictures by yourself.展开更多
An overlay share mesh infrastructure is presented for high dynamic group communication systems, such as distributed interactive simulation (DIS) and distributed virtual environments (DVE). Overlay share mesh infrastru...An overlay share mesh infrastructure is presented for high dynamic group communication systems, such as distributed interactive simulation (DIS) and distributed virtual environments (DVE). Overlay share mesh infrastructure can own better adapting ability for high dynamic group than tradition multi-tree multicast infrastructure by sharing links among different groups. The mechanism of overlay share mesh based on area of interest (AOI) was discussed in detail in this paper. A large number of simulation experiments were done and the performance of mesh infrastructure was studied. Experiments results proved that overlay mesh infrastructure owns better adaptability than traditional multi-tree infrastructure for high dynamic group communication systems.展开更多
With the advancements in wireless sensor networks, Internet of Vehicles(IOV) has shown great potential in aiding to ease traffic congestion. In IOV, vehicles can easily exchange information with other vehicles and inf...With the advancements in wireless sensor networks, Internet of Vehicles(IOV) has shown great potential in aiding to ease traffic congestion. In IOV, vehicles can easily exchange information with other vehicles and infrastructures, thus, the development of IOV will greatly improve vehicles safety, promote green information consumption and have a profound impact on many industries. The purpose of this paper is to promote the innovation and development of IOV. Firstly, this paper presents general requirements of IOV such as guidelines, basic principles, and the goal of development. Secondly, we analyze critical applications, crucial support, and business model to promote the industrial development of IOV. Finally, this paper proposes some safeguard measures to further promote the development of IOV.展开更多
In order to optimize the embedded system implementation for Ethernet-based computer numerical control (CNC) system, it is very necessary to establish the performance analysis model and further adopt the codesign met...In order to optimize the embedded system implementation for Ethernet-based computer numerical control (CNC) system, it is very necessary to establish the performance analysis model and further adopt the codesign method from the control, communication and computing perspectives. On the basis of analyzing real-time Ethemet, system architecture, time characteristic parameters of control-loop ere, a performance analysis model for real-time Ethemet-based CNC system was proposed, which is able to include the timing effects caused by the implementation platform in the simulation. The key for establishing the model is accomplished by designing the error analysis module and the controller nodes. Under the restraint of CPU resource and communication bandwidth, the experiment with a case study was conducted, and the results show that if the deadline miss ratio of data packets is 0.2%, then the percentage error is 1.105%. The proposed model can be used at several stages of CNC system development.展开更多
An integrated monitoring system for running parameters of key mining equipmenton the basis of condition monitoring technology and modern communication networktechnology was developed.The system consists of a client co...An integrated monitoring system for running parameters of key mining equipmenton the basis of condition monitoring technology and modern communication networktechnology was developed.The system consists of a client computer with functions ofsignal acquisition and processing, and a host computer in the central control room.Thesignal acquisition module of the client computer can collect the running parameters fromvarious monitoring terminals in real-time.The DSP high-speed data processing system ofthe main control module can quickly achieve the numerical calculation for the collectedsignal.The signal modulation and signal demodulation are completed by the frequencyshift keying circuit and phase-locked loop frequency circuit, respectively.Finally, the signalis sent to the host computer for logic estimation and diagnostic analysis using the networkcommunication technology, which is helpful for technicians and managers to control therunning state of equipment.展开更多
Advanced intelligent or "smart" meters are being deployed in Asia. A result of deployment of smart meters, with associated equipment, is the electric power industry faced with new and changing threats, vulnerabiliti...Advanced intelligent or "smart" meters are being deployed in Asia. A result of deployment of smart meters, with associated equipment, is the electric power industry faced with new and changing threats, vulnerabilities and re-evaluate traditional approaches to cyber security. Protection against emerging cyber-security threats targeting smart meter infrastructures will increase risk to both the utility and customer if not addressed within initial rollouts. This paper will discuss the issues in SMI (smart meter infrastructures) deployments that pertain to cyber security. It will cover topics such as the threats to operations, infrastructure, network and people and organization and their associated risks. SMI deployments include not only the smart meter, but also the interfaces for home energy management systems as well as communication interfaces back to the utility. Utilities must recognize and anticipate the new threat landscape that can attack and compromise the meter and the associated field network collectors. They must also include threats to the WAN (wide-area-network) backhaul networks, smart meter headends, MDMS (meter data management systems) and their interfaces to CIS (customer information systems) and billing and OMS (outage management systems). Lessons learned from SMI implementations from North America, Europe and recently, Japan, will be discussed. How white-box and black-box testing techniques are applied to determine the threat impact to the SMI. Finally, organizational change risk will be discussed and how utilities have responded to re-organizing and developing a security governance structure for the SMI and other smart grid applications.展开更多
基金supported by the National High Technology Research and Development Program of P.R.China under Grant No.2012 AA121604 the National Natural Science Foundation of China under Grants No.60902042,No.61170014,No.61202079+1 种基金 the National Research Foundation for the Doctoral Program of Higher Education of China under Grant No.20090006110014 the Foundation for Key Program of Ministry of Education of China under Grant No.311007
文摘The architecture of cislunar multi-hop communication networks, which focuses on the requirements of lunar full-coverage and continuous cislunar communications, is presented on the basis of Geosynchronous Orbit (GEO) satellite network relays. According to the geographical distribution of the forthcoming Chinese Deep Space Measuring and Controlling Network (DSMCN), two networking schemes are proposed and two elevation angle optimization models are established for locating GEO relay satellites. To analyze the dynamic connectivity, a dynamic network model is constructed with respect to the time-varying characteristics of cislunar trunk links. The advantages of the two proposed schemes, in terms of the Connectivity Rate (CR), Interruption Frequency (IF), and Average Length of Connecting Duration (ALCD), are corroborated by several simulations. In the case of the lunar polar orbit constellation case, the gains in the performance of scheme I are observed to be 134.55%, 117.03%, and 217.47% compared with DSMCN for three evaluation indicators, and the gains in the performance of scheme II are observed to be 238. 22%, 240.40%, and 572.71%. The results validate that the connectivity of GEO satellites outperforms that of earth facilities significantly and schemes based on GEO satellite relays are promising options for cislunar multi-hop communication networking.
基金the National Natural Science Foundation of China,the PAPD Project of Jiangsu Higher Education Institutions,the National S&T Dedicated Mega-Project,the Qing Lan Project of Jiangsu Province of China,the open research fund of Key Lab of Broadband Wireless Communication and Sensor Network Technology (Nanjing University of Posts and Telecommunications),Ministry of Education
文摘The mainstream approaches to green networking are discussed first from the view of engineering,including resource consolidation,server virtualization,selective connectedness,and proportional computing.A brief introduction to network virtualization techniques is given then and a virtual node embedding approach is provided.Finally,three kinds of enhanced green networking schemes by network virtualization are proposed,that is enhancement to sever virtualization,resource consolidation and Adaptive Link Rate(ALR).Examples are included to show the virtue of network virtualization to green networking in terms of energy efficient communications.
文摘The human brain is built to process complex visual impressions within milliseconds. In comparison with sequentially coded spoken language and written texts, we are capable of consuming graphical information at a high bandwidth in a parallel fashion, producing a picture worth more than a thousand words. Effective information visualization can be a powerful tool to capture people's attention and quickly communicate large amounts of data and complex information. This is particularly important in the context of communication data, which often describes entities (people, organizations) and their connections through communication. Visual analytics approaches can optimize the user-computer interaction to gain insights into communication networks and learn about their structures. Network visualization is a perfect instrument to better communicate the results of analysis. The precondition for effective information visualization and successful visual reasoning is the capability to draw "good" pictures. Even though communication networks are often large, including thousands or even millions of people, underlying visualization principles are identical to those used for visualizing smaller networks. In this article, you will learn about these principles, giving you the ability to assess the quality of network visualizations and to draw better network pictures by yourself.
基金The National Basic Research Program of China(973Program)(No.2002CB312200)The National Natural Science Foundation of China(No.60575036)
文摘An overlay share mesh infrastructure is presented for high dynamic group communication systems, such as distributed interactive simulation (DIS) and distributed virtual environments (DVE). Overlay share mesh infrastructure can own better adapting ability for high dynamic group than tradition multi-tree multicast infrastructure by sharing links among different groups. The mechanism of overlay share mesh based on area of interest (AOI) was discussed in detail in this paper. A large number of simulation experiments were done and the performance of mesh infrastructure was studied. Experiments results proved that overlay mesh infrastructure owns better adaptability than traditional multi-tree infrastructure for high dynamic group communication systems.
文摘With the advancements in wireless sensor networks, Internet of Vehicles(IOV) has shown great potential in aiding to ease traffic congestion. In IOV, vehicles can easily exchange information with other vehicles and infrastructures, thus, the development of IOV will greatly improve vehicles safety, promote green information consumption and have a profound impact on many industries. The purpose of this paper is to promote the innovation and development of IOV. Firstly, this paper presents general requirements of IOV such as guidelines, basic principles, and the goal of development. Secondly, we analyze critical applications, crucial support, and business model to promote the industrial development of IOV. Finally, this paper proposes some safeguard measures to further promote the development of IOV.
基金Projects(50875090,50905063) supported by the National Natural Science Foundation of ChinaProject(2009AA04Z111) supported by the National High Technology Research and Development Program of China+2 种基金Project(20090460769) supported by China Postdoctoral Science FoundationProject(2011ZM0070) supported by the Fundamental Research Funds for the Central Universities in ChinaProject(S2011010001155) supported by the Natural Science Foundation of Guangdong Province,China
文摘In order to optimize the embedded system implementation for Ethernet-based computer numerical control (CNC) system, it is very necessary to establish the performance analysis model and further adopt the codesign method from the control, communication and computing perspectives. On the basis of analyzing real-time Ethemet, system architecture, time characteristic parameters of control-loop ere, a performance analysis model for real-time Ethemet-based CNC system was proposed, which is able to include the timing effects caused by the implementation platform in the simulation. The key for establishing the model is accomplished by designing the error analysis module and the controller nodes. Under the restraint of CPU resource and communication bandwidth, the experiment with a case study was conducted, and the results show that if the deadline miss ratio of data packets is 0.2%, then the percentage error is 1.105%. The proposed model can be used at several stages of CNC system development.
基金Supported by the National Hi-tech Research and Development Program of China(2007AA04Z415)the Hunan Province and Xiangtan City Natural Science Joint Foundation(09JJ8005)the Torch Program Project of Hunan Province(2008SH044)
文摘An integrated monitoring system for running parameters of key mining equipmenton the basis of condition monitoring technology and modern communication networktechnology was developed.The system consists of a client computer with functions ofsignal acquisition and processing, and a host computer in the central control room.Thesignal acquisition module of the client computer can collect the running parameters fromvarious monitoring terminals in real-time.The DSP high-speed data processing system ofthe main control module can quickly achieve the numerical calculation for the collectedsignal.The signal modulation and signal demodulation are completed by the frequencyshift keying circuit and phase-locked loop frequency circuit, respectively.Finally, the signalis sent to the host computer for logic estimation and diagnostic analysis using the networkcommunication technology, which is helpful for technicians and managers to control therunning state of equipment.
文摘Advanced intelligent or "smart" meters are being deployed in Asia. A result of deployment of smart meters, with associated equipment, is the electric power industry faced with new and changing threats, vulnerabilities and re-evaluate traditional approaches to cyber security. Protection against emerging cyber-security threats targeting smart meter infrastructures will increase risk to both the utility and customer if not addressed within initial rollouts. This paper will discuss the issues in SMI (smart meter infrastructures) deployments that pertain to cyber security. It will cover topics such as the threats to operations, infrastructure, network and people and organization and their associated risks. SMI deployments include not only the smart meter, but also the interfaces for home energy management systems as well as communication interfaces back to the utility. Utilities must recognize and anticipate the new threat landscape that can attack and compromise the meter and the associated field network collectors. They must also include threats to the WAN (wide-area-network) backhaul networks, smart meter headends, MDMS (meter data management systems) and their interfaces to CIS (customer information systems) and billing and OMS (outage management systems). Lessons learned from SMI implementations from North America, Europe and recently, Japan, will be discussed. How white-box and black-box testing techniques are applied to determine the threat impact to the SMI. Finally, organizational change risk will be discussed and how utilities have responded to re-organizing and developing a security governance structure for the SMI and other smart grid applications.