A new approach to the design of the optical fiber direction coupler by using neural network is proposed. To train the artificial neural network,the coupling length is defined as the input sample, and the coupling rati...A new approach to the design of the optical fiber direction coupler by using neural network is proposed. To train the artificial neural network,the coupling length is defined as the input sample, and the coupling ratio is defined as the output sample. Compared with the numerical value calculation of the theoretical formula, the error of the neural network model output is 1% less.Then, through the model, to design a broadband or a single wavelength optical fiber direction coupler becomes easy. The method is proved to be reliable, accurate and time saving. So it is promising in the field of both investigation and application.展开更多
This letter investigates an efficient design procedure integrating the Genetic Algorithm (GA) with the Finite Difference Time Domain (FDTD) for the fast optimal design of Smart Antenna Arrays (SAA). The FDTD is used t...This letter investigates an efficient design procedure integrating the Genetic Algorithm (GA) with the Finite Difference Time Domain (FDTD) for the fast optimal design of Smart Antenna Arrays (SAA). The FDTD is used to analyze SAA with mutual coupling. Then,on the basis of the Maximal Signal to Noise Ratio (MSNR) criteria, the GA is applied to the optimization of weighting elements and structure of SAA. Finally, the effectiveness of the analysis is evaluated by experimental antenna arrays.展开更多
In birefringent optical fibers, the propagation of femtosecond soliton pulses is described by coupled higherorder nonlinear Schrodinger equations. In this paper, we will investigate the bright and dark soliton solutio...In birefringent optical fibers, the propagation of femtosecond soliton pulses is described by coupled higherorder nonlinear Schrodinger equations. In this paper, we will investigate the bright and dark soliton solutions of(2+1)-dimensional coupled higher-order nonlinear Schrodinger equations, with the aid of symbolic computation and the Hirota method. On the basis of soliton solutions, we test and discuss the interactions graphically between the solitons in the x-z, x-t, and z-t planes.展开更多
In order to increase the coupling efficiency and suppress the random angular jitter induced by atmosphere turbulent, the fine tracking system with fast steering mirror (FSM) is demonstrated. The field experiment res...In order to increase the coupling efficiency and suppress the random angular jitter induced by atmosphere turbulent, the fine tracking system with fast steering mirror (FSM) is demonstrated. The field experiment results of free-space optical communication link across 16 km show that when there is no tracking, the range of the x-axis coordinates' fluctuation achieves 46 pixels, corresponding to the incident angle of 73.6 μrad, and its mean square deviation is 6.5 pixels, corre- sponding to the incident angle of 10.4/.trad. When there is tracking, the range of fiuctuation is suppressed to 10 pixels and 16 ktrad, and the mean square deviation reduces to 1.5 pixels and 2.6 brad for the spot's centroid and the incident angle, respectively. Significantly, the coupling efficiency increases by 6 times, and the fluctuation of received light power decreases obviously.展开更多
We investigate the effect of decoherence from a spin environment on the quantum channel capacity.Our results imply that the time evolution of the quantum channel capacity depends on the number of freedom degrees of th...We investigate the effect of decoherence from a spin environment on the quantum channel capacity.Our results imply that the time evolution of the quantum channel capacity depends on the number of freedom degrees of the environment,the tunneling element,the initial state of the environment,and the system-environment coupling strength.From the analysis,we find that the strong tunneling elements and the weak coupling strength can enhance the quantum channel capacity while the environment with a large number of freedom degrees and the strong coupling strength will shrink it.展开更多
文摘A new approach to the design of the optical fiber direction coupler by using neural network is proposed. To train the artificial neural network,the coupling length is defined as the input sample, and the coupling ratio is defined as the output sample. Compared with the numerical value calculation of the theoretical formula, the error of the neural network model output is 1% less.Then, through the model, to design a broadband or a single wavelength optical fiber direction coupler becomes easy. The method is proved to be reliable, accurate and time saving. So it is promising in the field of both investigation and application.
文摘This letter investigates an efficient design procedure integrating the Genetic Algorithm (GA) with the Finite Difference Time Domain (FDTD) for the fast optimal design of Smart Antenna Arrays (SAA). The FDTD is used to analyze SAA with mutual coupling. Then,on the basis of the Maximal Signal to Noise Ratio (MSNR) criteria, the GA is applied to the optimization of weighting elements and structure of SAA. Finally, the effectiveness of the analysis is evaluated by experimental antenna arrays.
基金Supported by the National Natural Science Foundation of China under Grant No.61671227the Natural Science Foundation of Shandong Province under Grant No.ZR2014AM018
文摘In birefringent optical fibers, the propagation of femtosecond soliton pulses is described by coupled higherorder nonlinear Schrodinger equations. In this paper, we will investigate the bright and dark soliton solutions of(2+1)-dimensional coupled higher-order nonlinear Schrodinger equations, with the aid of symbolic computation and the Hirota method. On the basis of soliton solutions, we test and discuss the interactions graphically between the solitons in the x-z, x-t, and z-t planes.
基金supported by the Hubei Provincial Department of Education Grant(Nos.CXY2009B032andD20102506)
文摘In order to increase the coupling efficiency and suppress the random angular jitter induced by atmosphere turbulent, the fine tracking system with fast steering mirror (FSM) is demonstrated. The field experiment results of free-space optical communication link across 16 km show that when there is no tracking, the range of the x-axis coordinates' fluctuation achieves 46 pixels, corresponding to the incident angle of 73.6 μrad, and its mean square deviation is 6.5 pixels, corre- sponding to the incident angle of 10.4/.trad. When there is tracking, the range of fiuctuation is suppressed to 10 pixels and 16 ktrad, and the mean square deviation reduces to 1.5 pixels and 2.6 brad for the spot's centroid and the incident angle, respectively. Significantly, the coupling efficiency increases by 6 times, and the fluctuation of received light power decreases obviously.
基金Supported by the National Natural Science Foundation of China under Grant Nos. 11105001,11004001,and 10975125
文摘We investigate the effect of decoherence from a spin environment on the quantum channel capacity.Our results imply that the time evolution of the quantum channel capacity depends on the number of freedom degrees of the environment,the tunneling element,the initial state of the environment,and the system-environment coupling strength.From the analysis,we find that the strong tunneling elements and the weak coupling strength can enhance the quantum channel capacity while the environment with a large number of freedom degrees and the strong coupling strength will shrink it.