Cellular-based Machine-Type Communication (MTC) will become more and more important in the near future for the advantage of the long-distance wireless communication.However,a large number of MTC applications introduce...Cellular-based Machine-Type Communication (MTC) will become more and more important in the near future for the advantage of the long-distance wireless communication.However,a large number of MTC applications introduce heavy load to cellular network.MTC traffic scheduling schemes are proposed to avoid congestion in this paper.Our approaches are based on the delay-tolerance of MTC traffic.Some MTC traffic is postponed until the network load becomes light.Moreover,our scheme efficiently utilizes the bandwidth resources reserved for handover in traditional cellular network.Simulation results show that the utility usage of radio resources is improved and the congestion probability is reduced.展开更多
Meter Data Collection Building Area Network(MDCBAN) deployed in high rises is playing an increasingly important role in wireless multi-hop smart grid meter data collection. Recently, increasingly numerous application ...Meter Data Collection Building Area Network(MDCBAN) deployed in high rises is playing an increasingly important role in wireless multi-hop smart grid meter data collection. Recently, increasingly numerous application layer data traffic makes MDCBAN be facing serious communication pressure. In addition, large density of meter data collection devices scattered in the limited geographical space of high rises results in obvious communication interference. To solve these problems, a traffic scheduling mechanism based on interference avoidance for meter data collection in MDCBAN is proposed. Firstly, the characteristics of network topology are analyzed and the corresponding traffic distribution model is proposed. Next, a wireless multi-channel selection scheme for different Floor Gateways and a single-channel time unit assignment scheme for data collection devices in the same Floor Network are proposed to avoid interference. At last, a data balanced traffic scheduling algorithm is proposed. Simulation results show that balanced traffic distribution and highly efficient and reliable data transmission can be achieved on the basis of effective interference avoidance between data collection devices.展开更多
基金supported by the National Science Foundation(60972047,60972048,60832001)National S&T Major Project(2011ZX03005-003-03,2008ZX03005-001,2010ZX03005-003)+4 种基金National Science Fund for Distinguished Young Scholars(60725105)National Basic Research Program of China(No.2009CB320404)Program for Changjiang Scholars and Innovative Research Team in University(IRT0852)the 111 Project(B08038)State Key Laboratory Foundation(ISN090305,ISN1002005)
文摘Cellular-based Machine-Type Communication (MTC) will become more and more important in the near future for the advantage of the long-distance wireless communication.However,a large number of MTC applications introduce heavy load to cellular network.MTC traffic scheduling schemes are proposed to avoid congestion in this paper.Our approaches are based on the delay-tolerance of MTC traffic.Some MTC traffic is postponed until the network load becomes light.Moreover,our scheme efficiently utilizes the bandwidth resources reserved for handover in traditional cellular network.Simulation results show that the utility usage of radio resources is improved and the congestion probability is reduced.
基金supported by the National Science and Technology Support Program of China (2015BAG10B01)the National Science Foundation of China under Grant No. 61232016, No.U1405254the PAPD fund
文摘Meter Data Collection Building Area Network(MDCBAN) deployed in high rises is playing an increasingly important role in wireless multi-hop smart grid meter data collection. Recently, increasingly numerous application layer data traffic makes MDCBAN be facing serious communication pressure. In addition, large density of meter data collection devices scattered in the limited geographical space of high rises results in obvious communication interference. To solve these problems, a traffic scheduling mechanism based on interference avoidance for meter data collection in MDCBAN is proposed. Firstly, the characteristics of network topology are analyzed and the corresponding traffic distribution model is proposed. Next, a wireless multi-channel selection scheme for different Floor Gateways and a single-channel time unit assignment scheme for data collection devices in the same Floor Network are proposed to avoid interference. At last, a data balanced traffic scheduling algorithm is proposed. Simulation results show that balanced traffic distribution and highly efficient and reliable data transmission can be achieved on the basis of effective interference avoidance between data collection devices.