In order to filter signal effectively according to selective center frequency, a voltage-controlled dynamic band-pass filter with gain compensation was designed based on voltage-controlled gain wideband amplifier VCA8...In order to filter signal effectively according to selective center frequency, a voltage-controlled dynamic band-pass filter with gain compensation was designed based on voltage-controlled gain wideband amplifier VCA810. The transfer function of the filter was analyzed and gain compensation voltages were given through tests; besides, a system was designed, including the gain compensation circuit and the control voltage circuit, etc. Center frequency will change from 1 kHz to 20 kHz according to control voltage on condition that bandwidth of the filter remains constant. The designed system has the advantages of simple structure, low noise, stable performance and convenient adjustment.展开更多
A new method of nonlinear analysis is established by combining phase space reconstruction and data reduction sub-frequency band wavelet. This method is applied to two types of chaotic dynamic systems(Lorenz and Rssler...A new method of nonlinear analysis is established by combining phase space reconstruction and data reduction sub-frequency band wavelet. This method is applied to two types of chaotic dynamic systems(Lorenz and Rssler) to examine the anti-noise ability for complex systems. Results show that the nonlinear dynamic system analysis method resists noise and reveals the internal dynamics of a weak signal from noise pollution. On this basis, the vertical upward gas–liquid two-phase flow in a 2 mm × 0.81 mm small rectangular channel is investigated. The frequency and energy distributions of the main oscillation mode are revealed by analyzing the time–frequency spectra of the pressure signals of different flow patterns. The positive power spectral density of singular-value frequency entropy and the damping ratio are extracted to characterize the evolution of flow patterns and achieve accurate recognition of different vertical upward gas–liquid flow patterns(bubbly flow:100%, slug flow: 92%, churn flow: 96%, annular flow: 100%). The proposed analysis method will enrich the dynamics theory of multi-phase flow in small channel.展开更多
文摘In order to filter signal effectively according to selective center frequency, a voltage-controlled dynamic band-pass filter with gain compensation was designed based on voltage-controlled gain wideband amplifier VCA810. The transfer function of the filter was analyzed and gain compensation voltages were given through tests; besides, a system was designed, including the gain compensation circuit and the control voltage circuit, etc. Center frequency will change from 1 kHz to 20 kHz according to control voltage on condition that bandwidth of the filter remains constant. The designed system has the advantages of simple structure, low noise, stable performance and convenient adjustment.
基金Supported by the National Natural Science Foundation of China(51406031)
文摘A new method of nonlinear analysis is established by combining phase space reconstruction and data reduction sub-frequency band wavelet. This method is applied to two types of chaotic dynamic systems(Lorenz and Rssler) to examine the anti-noise ability for complex systems. Results show that the nonlinear dynamic system analysis method resists noise and reveals the internal dynamics of a weak signal from noise pollution. On this basis, the vertical upward gas–liquid two-phase flow in a 2 mm × 0.81 mm small rectangular channel is investigated. The frequency and energy distributions of the main oscillation mode are revealed by analyzing the time–frequency spectra of the pressure signals of different flow patterns. The positive power spectral density of singular-value frequency entropy and the damping ratio are extracted to characterize the evolution of flow patterns and achieve accurate recognition of different vertical upward gas–liquid flow patterns(bubbly flow:100%, slug flow: 92%, churn flow: 96%, annular flow: 100%). The proposed analysis method will enrich the dynamics theory of multi-phase flow in small channel.