Research on the distribution of smoke in tunnels is significant for the fire emergency rescue after an operating metro train catches fire. A dynamic grid technique was adopted to research the law of smoke flow diffusi...Research on the distribution of smoke in tunnels is significant for the fire emergency rescue after an operating metro train catches fire. A dynamic grid technique was adopted to research the law of smoke flow diffusion inside the tunnel when the bottom of a metro train was on fire and to compare the effect of longitudinal ventilation modes on the smoke motion when the burning train stopped. Research results show that the slipstream curves around the train obtained by numerical simulation are consistent with experimental data. When the train decelerates, the smoke flow first extends to the tail of the train. With the decrease of the train's speed, the smoke flow diffuses to the head of the train. After the train stops, the slipstream around the train formed in the process of train operation plays a leading role in the smoke diffusion in the tunnel. The smoke flow quickly diffuses to the domain in front of the train. After forward mechanical ventilation is provided, the smoke flow inside the tunnel continues to diffuse downstream. When reverse mechanical ventilation operates, the smoke in front of the train flows back rapidly and diffuses to the rear of the train.展开更多
A wireless communication method with dynamic adding nodes for Underground Search and Rescue robot is proposed: fix the address of the controller, add repeater nodes into the net dynamically, and shift the address of ...A wireless communication method with dynamic adding nodes for Underground Search and Rescue robot is proposed: fix the address of the controller, add repeater nodes into the net dynamically, and shift the address of the mobile terminal. With this method, the Search and Rescue robot can reach the deeper place of a mine to help rescue and keep in touch with the controller through wireless communication in a single channel, even in a complex laneway where radio wave cannot go through the thick wall. The collision in the process of the two-way multi-hop communication in the single channel will also be resolved by the communication direction priority and response signal mechanism, to enhance the reliability of communication. Finally, a sample is designed and an experiment is conducted to verify the efficiency of the method.展开更多
基金Project(U1134203)supported by the Major Program of the National Natural Science Foundation of ChinaProject(51105384)supported by the National Natural Science Foundation of China
文摘Research on the distribution of smoke in tunnels is significant for the fire emergency rescue after an operating metro train catches fire. A dynamic grid technique was adopted to research the law of smoke flow diffusion inside the tunnel when the bottom of a metro train was on fire and to compare the effect of longitudinal ventilation modes on the smoke motion when the burning train stopped. Research results show that the slipstream curves around the train obtained by numerical simulation are consistent with experimental data. When the train decelerates, the smoke flow first extends to the tail of the train. With the decrease of the train's speed, the smoke flow diffuses to the head of the train. After the train stops, the slipstream around the train formed in the process of train operation plays a leading role in the smoke diffusion in the tunnel. The smoke flow quickly diffuses to the domain in front of the train. After forward mechanical ventilation is provided, the smoke flow inside the tunnel continues to diffuse downstream. When reverse mechanical ventilation operates, the smoke in front of the train flows back rapidly and diffuses to the rear of the train.
基金supported by State Key Laboratory of Robotics and System of Harbin Institute of Technology(SKLRS-2009-MS-03)
文摘A wireless communication method with dynamic adding nodes for Underground Search and Rescue robot is proposed: fix the address of the controller, add repeater nodes into the net dynamically, and shift the address of the mobile terminal. With this method, the Search and Rescue robot can reach the deeper place of a mine to help rescue and keep in touch with the controller through wireless communication in a single channel, even in a complex laneway where radio wave cannot go through the thick wall. The collision in the process of the two-way multi-hop communication in the single channel will also be resolved by the communication direction priority and response signal mechanism, to enhance the reliability of communication. Finally, a sample is designed and an experiment is conducted to verify the efficiency of the method.