The necessity and feasibility of the use of the personalized ventilation(PV)technology in a toll booth is described.First,the indoor environment of the toll booth equipped with a PV system is analyzed.Based on the a...The necessity and feasibility of the use of the personalized ventilation(PV)technology in a toll booth is described.First,the indoor environment of the toll booth equipped with a PV system is analyzed.Based on the analysis results,a set of equipment for controlling the indoor air quality(IAQ)of the toll booth is devised.Then,a full-scale model of the toll booth is set up in the laboratory.The airflow organization,the optimum operation parameters,and the restraint effects of the PV system on pollution are also experimentally studied.The experimental results on the air supply characteristics show that the PV system can effectively reduce the air age,improve the ventilation efficiency,and enhance the comfort and acceptability of human beings.In addition,this system plays a significant role in preventing pollution.展开更多
Accompanying with the economic development and the process of industrialization and urbanization in China, the energy consumption and greenhouse gases emission of transport sector increased rapidly. From the viewpoint...Accompanying with the economic development and the process of industrialization and urbanization in China, the energy consumption and greenhouse gases emission of transport sector increased rapidly. From the viewpoint of how the urban traffic management department should cope with the global climate change, based on the economy, institutional reform, planning and policies in China, the paper analyzed the main important problems and obstacles in the development of urban transport, put forward the corresponding policy recommendations which could lead the urban transport system transform to low carbon emission and become more suitable to the climate change.展开更多
China surpassed the United States (US) in 2006 to become the largest greenhouse gas emitter. CCS- EOR technology, which meets the dual needs of reducing carbon emissions and enhancing oil recovery, has had much impo...China surpassed the United States (US) in 2006 to become the largest greenhouse gas emitter. CCS- EOR technology, which meets the dual needs of reducing carbon emissions and enhancing oil recovery, has had much importance attached to it. For the latest decade, the Chinese government has provided support for CCS- EOR technology through policy, funding and research projects. Under the vigorous guidance of the government, oil companies represented by China National Petroleum Corporation (CNPC) competed to carry out research, demonstration, popularization and operation in major oil fields centering on the CCS-EOR technology and achieved remarkable results. Its scientific and technological achievements are reflected in various sub-projects under the 863 Program, 973 Program and National Science and Technology Major Project. However, while shifting from trial promotion of the current stage to large-scale commercialization, CCS-EOR technology will not only face many opportunities but also quite a few challenges.展开更多
Taking public transit facilities (PTFs) is the major transport style in Hong Kong. Human exposure to indoor air pollutants may cause adverse health effects to the passengers. Exposure assessment on air pollutants is i...Taking public transit facilities (PTFs) is the major transport style in Hong Kong. Human exposure to indoor air pollutants may cause adverse health effects to the passengers. Exposure assessment on air pollutants is important for the control of human diseases caused by indoor air pollution. In this paper, the indoor PM10, CO and CO 2 levels in various PTFs, such as public bus, subway, railway and ferry in Hong Kong, were mea- sured. Combining with the time budget survey of Hong Kong population,the human exposures were calculated through Monte-Carlo simulation.展开更多
Environmental pollution and emissions from greenhouse gases caused by fossil fuel use are a threat to sustainable development. With renewable energy sources, no polluting emissions are released into the atmosphere. Th...Environmental pollution and emissions from greenhouse gases caused by fossil fuel use are a threat to sustainable development. With renewable energy sources, no polluting emissions are released into the atmosphere. Therefore, using these sources on a large-scale is a key to reducing emissions and meeting the commitments established by Kyoto Protocol. Moreover, EU wants that the 20% of energy consumption is renewable in 2020. This study describes economic aspects, such as net present value and internal profitability rate, of the repowering process for the wind farms. Repowering can generate considerably more power with fewer facilities. This process was the result of a growing demand for renewable energies, facilitated by the great potential of wind energy in the north of Spain. The wind farms studied in this work were set up before 1998 and they had obsolete machinery with low power. There are strong indications that repowering is a profitable endeavour.展开更多
The demand for fossil fuel is at an all time high worldwide. Annually-30 billion barrels of petroleum is being consumed worldwide. In this busy society, transportation is vital and, for transportation, petroleum is a ...The demand for fossil fuel is at an all time high worldwide. Annually-30 billion barrels of petroleum is being consumed worldwide. In this busy society, transportation is vital and, for transportation, petroleum is a requirement. All the major forms of business, agricultural, exports and imports depend on transportation. There are three forms of major transportation: by ground, air and sea. These transportations require petroleum to function. Vehicles in the road require gasoline/diesel, airway transportation requires aviation fuel and sea transportation requires fuel oil and other forms of fuels. For not only transportation but, petroleum is required to make all kind of daily use plastics. If the consumption of petroleum continues this way, it will be finished in the near future. Emissions released from evaporation and combustion of these fuel contribute to many environmental and health problems, including emitting greenhouse gases that contribute immensely to global warming. Annually-7 billion tons of carbon is released to the environment due to burning of petroleum. Moreover, when the plastics are discarded into the landfill, it becomes waste plastic and since plastic is non-biodegradable, it can remain in the landfill for a long time. Waste plastics presence in the landfill causes environmental problems for example, it can cause soil to decay, pollute underground water resource and cause land to be infertile. Alternative source of energy created from solar, wind, hydrogen fuel, biomass fuel, bio-diesel, green diesel, bio-ethanol, and geo-thermal has been proposed as a solution to these problems and in future with further research, these alternative sources will play an important role in the field of alternative energy.展开更多
As the transport sector is a major source of greenhouse gas emissions, the effect of urbanization on transport CO2 emissions in developing cities has become a key issue under global climate change. Examining the case ...As the transport sector is a major source of greenhouse gas emissions, the effect of urbanization on transport CO2 emissions in developing cities has become a key issue under global climate change. Examining the case of Xi'an, this paper aims to explore the spatial distribution of commuting CO2 emissions and influencing factors in the new, urban industry zones and city centers considering Xi'an's transition from a monocentric to a polycentric city in the process of urbanization. Based on household survey data from 1501 respondents, there are obvious differences in commuting CO2 emissions between new industry zones and city centers: City centers feature lower household emissions of 2.86 kg CO2 per week, whereas new industry zones generally have higher household emissions of 3.20 kg CO2 per week. Contrary to previous research results, not all new industry zones have high levels of CO2 emissions; with the rapid development of various types of industries, even a minimum level of household emissions of 2.53 kg CO2 per week is possible. The uneven distribution of commuting CO2 emissions is not uniformly affected by spatial parameters such as job-housing balance, residential density, employment density, and land use diversity. Optimum combination of the spatial parameters and travel pattern along with corresponding transport infrastructure construction may be an appropriate path to reduction and control of emissions from commuting.展开更多
Peatland of central Kalimantan covers 2,934,660 ha and some areas are used for oil palm culture. Oil palm culture in peatland requires drainage system. Petland drainage is regarded to enhance greenhouse gases release ...Peatland of central Kalimantan covers 2,934,660 ha and some areas are used for oil palm culture. Oil palm culture in peatland requires drainage system. Petland drainage is regarded to enhance greenhouse gases release due to faster peat decomposition and reduce peat surface (subsidence) in certain time. To improve peat productivity, the in situ ameliorant materials should be applied such as biochar of oil palm bunches. The experiment was conducted in greenhouse gases laboratory using soil column method to determine effect of biochar of oil palm bunches on greenhouse gases flux in different peat agro-ecology. The peat samples were taken from central Kalimantan. The peat samples were collected using soil column with 20 cm-diameter and 50 cm in height. The 3 ~ 5 experiment was arranged using randomized block design with three replicates. The first factor treatment was peat samples with different agroecologies (below 3 years old of oil palm, above 3 years old of oil palm, and scrubs), and the second factor treatment was rate of oil palm bunches biochar (0, l, 2, 3, 4 t.ha-1). Without applying biochar of oil palm bunches, the CO2 flux from peat with scrub was higher than from peat with oil palm plantation. Application of oil palm bunches biochar in three peat agro-ecologies emitted CO2 lower than application of no biochar. Under peat with scrub ecology, methane flux increased with time period of incubation. Methane flux was generally higher by applying biochar of oil palm bunches in scrubs agroecology, however, application of oil palm biochar reduced methane flux from peat for oil palm plantation. The increase of rate of oil palm bunches biochar decreased significantly more GHGs emission (P 〈 0.01).展开更多
Fluctuations in soil greenhouse gas(GHG)are an important part of the terrestrial ecosystem carbon-nitrogen cycle,but uncertainties remain about the dynamic change and budget assessment of soil GHG flux.Using high freq...Fluctuations in soil greenhouse gas(GHG)are an important part of the terrestrial ecosystem carbon-nitrogen cycle,but uncertainties remain about the dynamic change and budget assessment of soil GHG flux.Using high frequency and consecutive soil GHG fluxes measured with an automatic dynamic chamber system,we tested the applicability of the current Forest-DNDC model in simulating soil CH4,CO2 and N2O fluxes in a temperate broad-leaved Korean pine forest at Changbai Mountain.The results showed that the Forest-DNDC model reproduced general patterns of environmental variables,however,simulated seasonal variation in soil temperature,snow melt processes and soil moisture partly deviated from measured variables,especially during the non-growing season.The modeled CH4 flux was close to the field measurement and co-varied mainly with soil temperature and snowpack.The modeled soil CO2 flux had the same seasonal trend to that of the observation along with variation in temperature,however,simulated CO2 flux in the growing season was underestimated.The modeled N2O flux attained a peak in summer due to the influence of temperature,which was apparently different from the observed peak of N2O flux in the freeze-thaw period.Meanwhile,both modeled CO2 flux and N2O flux were dampened by rainfall events.Apart from consistent estimation of annual soil CH4 flux,the annual accumulation of CO2 and N2O was underestimated.It is still necessary to further optimize model parameters and processes using long-term high-frequency observation data,especially transference of heat and water in soil and GHG producing mechanism.Continues work will improve modeling,ecosystem carbon-nitrogen budget assessment and estimation of soil GHGs flux from the site to the region.展开更多
Objective:This study summarizes and compares clinical and laboratory characteristics of 34 patients admitted to the intensive care unit(ICU)for complications from coronavirus disease 2019(COVID-19)at the First Affilia...Objective:This study summarizes and compares clinical and laboratory characteristics of 34 patients admitted to the intensive care unit(ICU)for complications from coronavirus disease 2019(COVID-19)at the First Affiliated Hospital,School of Medicine,Zhejiang University,Hangzhou,China from Jan.22 to Mar.5,2020.Methods:A total of 34 patients were divided into two groups,including those who required noninvasive ventilation(NIV)and invasive mechanical ventilation(IMV)with additional extracorporeal membrane oxygenation(ECMO)in 11 patients.Clinical features of COVID-19 patients were described and the parameters of clinical characteristics between the two groups were compared.Results:The rates of the acute cardiac and kidney complications were higher in IMV cases than those in NIV cases.Most patients had lymphocytopenia on admission,with lymphocyte levels dropping progressively on the following days,and the more severe lymphopenia developed in the IMV group.In both groups,T lymphocyte counts were below typical lower limit norms compared to B lymphocytes.On admission,both groups had higher than expected amounts of plasma interleukin-6(IL-6),which over time declined more in NIV patients.The prothrombin time was increased and the levels of platelet,hemoglobin,blood urea nitrogen(BUN),D-dimer,lactate dehydrogenase(LDH),and IL-6 were higher in IMV cases compared with NIV cases during hospitalization.Conclusions:Data showed that the rates of complications,dynamics of lymphocytopenia,and changes in levels of platelet,hemoglobin,BUN,D-dimer,LDH and IL-6,and prothrombin time in these ICU patients were significantly different between IMV and NIV cases.展开更多
The time-dependent variation of airborne particle concentration for different sizes in a test chamber was numerically predicted with drift-flux model. The performance of the drift-flux model for particle transport in ...The time-dependent variation of airborne particle concentration for different sizes in a test chamber was numerically predicted with drift-flux model. The performance of the drift-flux model for particle transport in different kinds of airflow fields was analyzed. The results show the drift-flux model can predict the transport of indoor fine particles reasonably well. When the air flow field varies slowly, the model can predict both the time-dependent variation ratio of the particle concentration and final stable concentration very well, and the difference for particles with different sizes can be also well predicted. When the air flow varies drastically, the accuracy of the model is decreased due to the neglect of the particles’ independent convective terms in the air flow.展开更多
文摘The necessity and feasibility of the use of the personalized ventilation(PV)technology in a toll booth is described.First,the indoor environment of the toll booth equipped with a PV system is analyzed.Based on the analysis results,a set of equipment for controlling the indoor air quality(IAQ)of the toll booth is devised.Then,a full-scale model of the toll booth is set up in the laboratory.The airflow organization,the optimum operation parameters,and the restraint effects of the PV system on pollution are also experimentally studied.The experimental results on the air supply characteristics show that the PV system can effectively reduce the air age,improve the ventilation efficiency,and enhance the comfort and acceptability of human beings.In addition,this system plays a significant role in preventing pollution.
基金Funded by Volvo Research and Educational Foundations (VREF)
文摘Accompanying with the economic development and the process of industrialization and urbanization in China, the energy consumption and greenhouse gases emission of transport sector increased rapidly. From the viewpoint of how the urban traffic management department should cope with the global climate change, based on the economy, institutional reform, planning and policies in China, the paper analyzed the main important problems and obstacles in the development of urban transport, put forward the corresponding policy recommendations which could lead the urban transport system transform to low carbon emission and become more suitable to the climate change.
文摘China surpassed the United States (US) in 2006 to become the largest greenhouse gas emitter. CCS- EOR technology, which meets the dual needs of reducing carbon emissions and enhancing oil recovery, has had much importance attached to it. For the latest decade, the Chinese government has provided support for CCS- EOR technology through policy, funding and research projects. Under the vigorous guidance of the government, oil companies represented by China National Petroleum Corporation (CNPC) competed to carry out research, demonstration, popularization and operation in major oil fields centering on the CCS-EOR technology and achieved remarkable results. Its scientific and technological achievements are reflected in various sub-projects under the 863 Program, 973 Program and National Science and Technology Major Project. However, while shifting from trial promotion of the current stage to large-scale commercialization, CCS-EOR technology will not only face many opportunities but also quite a few challenges.
文摘Taking public transit facilities (PTFs) is the major transport style in Hong Kong. Human exposure to indoor air pollutants may cause adverse health effects to the passengers. Exposure assessment on air pollutants is important for the control of human diseases caused by indoor air pollution. In this paper, the indoor PM10, CO and CO 2 levels in various PTFs, such as public bus, subway, railway and ferry in Hong Kong, were mea- sured. Combining with the time budget survey of Hong Kong population,the human exposures were calculated through Monte-Carlo simulation.
文摘Environmental pollution and emissions from greenhouse gases caused by fossil fuel use are a threat to sustainable development. With renewable energy sources, no polluting emissions are released into the atmosphere. Therefore, using these sources on a large-scale is a key to reducing emissions and meeting the commitments established by Kyoto Protocol. Moreover, EU wants that the 20% of energy consumption is renewable in 2020. This study describes economic aspects, such as net present value and internal profitability rate, of the repowering process for the wind farms. Repowering can generate considerably more power with fewer facilities. This process was the result of a growing demand for renewable energies, facilitated by the great potential of wind energy in the north of Spain. The wind farms studied in this work were set up before 1998 and they had obsolete machinery with low power. There are strong indications that repowering is a profitable endeavour.
文摘The demand for fossil fuel is at an all time high worldwide. Annually-30 billion barrels of petroleum is being consumed worldwide. In this busy society, transportation is vital and, for transportation, petroleum is a requirement. All the major forms of business, agricultural, exports and imports depend on transportation. There are three forms of major transportation: by ground, air and sea. These transportations require petroleum to function. Vehicles in the road require gasoline/diesel, airway transportation requires aviation fuel and sea transportation requires fuel oil and other forms of fuels. For not only transportation but, petroleum is required to make all kind of daily use plastics. If the consumption of petroleum continues this way, it will be finished in the near future. Emissions released from evaporation and combustion of these fuel contribute to many environmental and health problems, including emitting greenhouse gases that contribute immensely to global warming. Annually-7 billion tons of carbon is released to the environment due to burning of petroleum. Moreover, when the plastics are discarded into the landfill, it becomes waste plastic and since plastic is non-biodegradable, it can remain in the landfill for a long time. Waste plastics presence in the landfill causes environmental problems for example, it can cause soil to decay, pollute underground water resource and cause land to be infertile. Alternative source of energy created from solar, wind, hydrogen fuel, biomass fuel, bio-diesel, green diesel, bio-ethanol, and geo-thermal has been proposed as a solution to these problems and in future with further research, these alternative sources will play an important role in the field of alternative energy.
基金funded by National Natural Science Foundation of China(51178055)Asia Pacific Network for Global Change Research(1094801)
文摘As the transport sector is a major source of greenhouse gas emissions, the effect of urbanization on transport CO2 emissions in developing cities has become a key issue under global climate change. Examining the case of Xi'an, this paper aims to explore the spatial distribution of commuting CO2 emissions and influencing factors in the new, urban industry zones and city centers considering Xi'an's transition from a monocentric to a polycentric city in the process of urbanization. Based on household survey data from 1501 respondents, there are obvious differences in commuting CO2 emissions between new industry zones and city centers: City centers feature lower household emissions of 2.86 kg CO2 per week, whereas new industry zones generally have higher household emissions of 3.20 kg CO2 per week. Contrary to previous research results, not all new industry zones have high levels of CO2 emissions; with the rapid development of various types of industries, even a minimum level of household emissions of 2.53 kg CO2 per week is possible. The uneven distribution of commuting CO2 emissions is not uniformly affected by spatial parameters such as job-housing balance, residential density, employment density, and land use diversity. Optimum combination of the spatial parameters and travel pattern along with corresponding transport infrastructure construction may be an appropriate path to reduction and control of emissions from commuting.
文摘Peatland of central Kalimantan covers 2,934,660 ha and some areas are used for oil palm culture. Oil palm culture in peatland requires drainage system. Petland drainage is regarded to enhance greenhouse gases release due to faster peat decomposition and reduce peat surface (subsidence) in certain time. To improve peat productivity, the in situ ameliorant materials should be applied such as biochar of oil palm bunches. The experiment was conducted in greenhouse gases laboratory using soil column method to determine effect of biochar of oil palm bunches on greenhouse gases flux in different peat agro-ecology. The peat samples were taken from central Kalimantan. The peat samples were collected using soil column with 20 cm-diameter and 50 cm in height. The 3 ~ 5 experiment was arranged using randomized block design with three replicates. The first factor treatment was peat samples with different agroecologies (below 3 years old of oil palm, above 3 years old of oil palm, and scrubs), and the second factor treatment was rate of oil palm bunches biochar (0, l, 2, 3, 4 t.ha-1). Without applying biochar of oil palm bunches, the CO2 flux from peat with scrub was higher than from peat with oil palm plantation. Application of oil palm bunches biochar in three peat agro-ecologies emitted CO2 lower than application of no biochar. Under peat with scrub ecology, methane flux increased with time period of incubation. Methane flux was generally higher by applying biochar of oil palm bunches in scrubs agroecology, however, application of oil palm biochar reduced methane flux from peat for oil palm plantation. The increase of rate of oil palm bunches biochar decreased significantly more GHGs emission (P 〈 0.01).
基金National Key Research and Development Program of China(2017YFC0503801)National Natural Science Foundation of China(31570446)
文摘Fluctuations in soil greenhouse gas(GHG)are an important part of the terrestrial ecosystem carbon-nitrogen cycle,but uncertainties remain about the dynamic change and budget assessment of soil GHG flux.Using high frequency and consecutive soil GHG fluxes measured with an automatic dynamic chamber system,we tested the applicability of the current Forest-DNDC model in simulating soil CH4,CO2 and N2O fluxes in a temperate broad-leaved Korean pine forest at Changbai Mountain.The results showed that the Forest-DNDC model reproduced general patterns of environmental variables,however,simulated seasonal variation in soil temperature,snow melt processes and soil moisture partly deviated from measured variables,especially during the non-growing season.The modeled CH4 flux was close to the field measurement and co-varied mainly with soil temperature and snowpack.The modeled soil CO2 flux had the same seasonal trend to that of the observation along with variation in temperature,however,simulated CO2 flux in the growing season was underestimated.The modeled N2O flux attained a peak in summer due to the influence of temperature,which was apparently different from the observed peak of N2O flux in the freeze-thaw period.Meanwhile,both modeled CO2 flux and N2O flux were dampened by rainfall events.Apart from consistent estimation of annual soil CH4 flux,the annual accumulation of CO2 and N2O was underestimated.It is still necessary to further optimize model parameters and processes using long-term high-frequency observation data,especially transference of heat and water in soil and GHG producing mechanism.Continues work will improve modeling,ecosystem carbon-nitrogen budget assessment and estimation of soil GHGs flux from the site to the region.
基金the Project for Emergency of Key R&D Plan from Zhejiang Science and Technology Agency(No.2020C03123),China。
文摘Objective:This study summarizes and compares clinical and laboratory characteristics of 34 patients admitted to the intensive care unit(ICU)for complications from coronavirus disease 2019(COVID-19)at the First Affiliated Hospital,School of Medicine,Zhejiang University,Hangzhou,China from Jan.22 to Mar.5,2020.Methods:A total of 34 patients were divided into two groups,including those who required noninvasive ventilation(NIV)and invasive mechanical ventilation(IMV)with additional extracorporeal membrane oxygenation(ECMO)in 11 patients.Clinical features of COVID-19 patients were described and the parameters of clinical characteristics between the two groups were compared.Results:The rates of the acute cardiac and kidney complications were higher in IMV cases than those in NIV cases.Most patients had lymphocytopenia on admission,with lymphocyte levels dropping progressively on the following days,and the more severe lymphopenia developed in the IMV group.In both groups,T lymphocyte counts were below typical lower limit norms compared to B lymphocytes.On admission,both groups had higher than expected amounts of plasma interleukin-6(IL-6),which over time declined more in NIV patients.The prothrombin time was increased and the levels of platelet,hemoglobin,blood urea nitrogen(BUN),D-dimer,lactate dehydrogenase(LDH),and IL-6 were higher in IMV cases compared with NIV cases during hospitalization.Conclusions:Data showed that the rates of complications,dynamics of lymphocytopenia,and changes in levels of platelet,hemoglobin,BUN,D-dimer,LDH and IL-6,and prothrombin time in these ICU patients were significantly different between IMV and NIV cases.
基金the financial support of National Natural Science Foundation of China (NSFC,No: 10502044, 10772162)the major projects on control and rectification of water body pollution (No. 2009ZX07424-001) the Natural Science Foundationof Zhejiang Province (ZJNSF, No: Z107332)
文摘The time-dependent variation of airborne particle concentration for different sizes in a test chamber was numerically predicted with drift-flux model. The performance of the drift-flux model for particle transport in different kinds of airflow fields was analyzed. The results show the drift-flux model can predict the transport of indoor fine particles reasonably well. When the air flow field varies slowly, the model can predict both the time-dependent variation ratio of the particle concentration and final stable concentration very well, and the difference for particles with different sizes can be also well predicted. When the air flow varies drastically, the accuracy of the model is decreased due to the neglect of the particles’ independent convective terms in the air flow.