期刊文献+
共找到10篇文章
< 1 >
每页显示 20 50 100
带气囊口咽通气道的临床应用 被引量:1
1
作者 杨旅军 俞素瑛 陈雄斌 《临床麻醉学杂志》 CAS CSCD 2000年第12期620-621,共2页
关键词 全身麻醉 呼吸管理 气囊口咽通气
下载PDF
棉花通气网带膜育苗床内温湿度变化及棉苗素质的研究
2
作者 陈德华 吴云康 庄军年 《中国农业气象》 CSCD 北大核心 1995年第3期31-32,47,共3页
棉花应用通气网带膜覆盖育苗,以10cm网带膜能提高苗床期的温度,≥12℃的活动积温比常规塑膜多100℃·d.苗床内相对湿度在育苗前中期比对照低3.79%/d,从而使棉苗素质提高,生理活性增强,达到了培育壮苗和节省... 棉花应用通气网带膜覆盖育苗,以10cm网带膜能提高苗床期的温度,≥12℃的活动积温比常规塑膜多100℃·d.苗床内相对湿度在育苗前中期比对照低3.79%/d,从而使棉苗素质提高,生理活性增强,达到了培育壮苗和节省用工的目的。 展开更多
关键词 棉花 通气 湿度 温度 育苗
下载PDF
Selection of Heat Recovery Ventilators in Different Climate Zones of China 被引量:2
3
作者 钟珂 赵敬德 刘加平 《Journal of Donghua University(English Edition)》 EI CAS 2007年第1期79-84,共6页
Considering four different climate zones in China, an investigation on the choice of heat recovery ventilator for the buildings with little moisture emissions is carried out. The annual composition of energy consumpti... Considering four different climate zones in China, an investigation on the choice of heat recovery ventilator for the buildings with little moisture emissions is carried out. The annual composition of energy consumption of air intake for per unitary air ventilation flow rate is evaluated by employing the testing data of climatic parameters in eight selected cities. The analysis shows that the total heat recovery is suitable in a controlled ventilation system with air humidity controlled during heating period of all the climates. For the building without air humidity controlled in winter, the sensible heat recovery ventilators can be used in severe cold and cold regions, and total heat recovery systems are more suitable for energy saving in hot summer and cold winter and hot summer and warm winter regions. 展开更多
关键词 heat recovery ventilator sensible heat latentheat climate zone heat recovery effectiveness.
下载PDF
A quasi-synoptic interpretation of water mass distribution and circulation in the western North Pacific:I.Water mass distribution 被引量:6
4
作者 谢玲玲 田纪伟 +1 位作者 胡敦欣 王凡 《Chinese Journal of Oceanology and Limnology》 SCIE CAS CSCD 2009年第3期630-639,共10页
With high-resolution conductivity-temperature-depth (CTD) observations conducted in Oct.-Nov. 2005, this study provides a detailed quasi-synoptic description of the North Pacific Tropic Water (NPTW), North Pacific... With high-resolution conductivity-temperature-depth (CTD) observations conducted in Oct.-Nov. 2005, this study provides a detailed quasi-synoptic description of the North Pacific Tropic Water (NPTW), North Pacific Intermediate Water (NPIW) and Antarctic Intermediate Water (AAIW) in the western North Pacific. Some novel features are found. NPTW enters the western ocean with highest-salinity core off shore at 15°-18°N, and then splits to flow northward and southward along the western boundary. Its salinity decreases and density increases outside the core region. NPIW spreads westward north of 15°N with lowest salinity off shore at 21°N, but mainly hugs the Mindanao coast south of 12°N. It shoals and thins toward the south, with salinity increasing and density decreasing. AAIW extends to higher latitude off shore than that in shore, and it is traced as a salinity minimum to only 10°N at 130°E. Most of the South Pacific waters turn northeastward rather than directly flow northward upon reaching to the Mindanao coast, indicating the eastward shift of the Mindanao Undercurrent (MUC). 展开更多
关键词 North Pacific Intermediate Water (NPIW) North Pacific Tropic Water (NPTW) Antarctic Intermediate Water (AAIW)
下载PDF
Simulation and analysis of airflow stability during fire in mine belt roadway 被引量:3
5
作者 ZHANG Sheng-zhu CHENG Wei-min +2 位作者 LI Qiu-jin ZHANG Rui LUO Chuan-Iong 《Journal of Coal Science & Engineering(China)》 2010年第4期375-380,共6页
According to fluid dynamics analysis during the fire, the criteria k-ε two-equation model for solving three-dimensional turbulence was determined, the pollutants generated in the fire disaster were set by adopting Mi... According to fluid dynamics analysis during the fire, the criteria k-ε two-equation model for solving three-dimensional turbulence was determined, the pollutants generated in the fire disaster were set by adopting Mixture multiphase flow, and the SIMPLE algorithm was used for solving on the basis of comprehensive consideration on the heat radia- tion and components transmission during fire. By simulating the airflow flowing state inside the tunnel during fire disaster of downward ventilation, drift ventilation, and ascensional ventilation, respectively, with regard to the actual situation of No.l, No.3, and No.5 belt roadway in Kongzhuang Coal Mine, the velocity vector distributions of pollutants under different inlet air volumes were obtained, and the damage degree and influential factors of disaster were also clear, which is helpful to control and avoid disaster during belt roadway fire. 展开更多
关键词 belt roadway disaster airflow STABILITY numerical simulation
下载PDF
Numerical Modeling and Analysis of Gas Entrainment for the Ventilated Cavity in Vertical Pipe
6
作者 向敏 江振宇 +1 位作者 张为华 屠基元 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2014年第3期252-260,共9页
A semi-empirical gas entrainment model was proposed for the ventilated cavity in vertical pipe, based on which, a complete numerical scheme was established by coupling with the Eulerian-Eulerian two-fluid model to pre... A semi-empirical gas entrainment model was proposed for the ventilated cavity in vertical pipe, based on which, a complete numerical scheme was established by coupling with the Eulerian-Eulerian two-fluid model to predict the multiscale flow field created by ventilated cavity. Model predictions were validated against experimental measurements on void fraction and bubble size distributions. Simulations were carried out to explore the effect of ventilation rate and inlet turbulence intensity on the macroscale cavity shape and the bubbly flow downstream of the ventilated cavity. As the ventilation rate increasing, a reverse trend was observed for the void fraction and bub-ble size distributions. It is concluded that the average void fraction in the pipe flow region is determined by the vo-lumetric ratio between liquid and gas. However, the bubble size evolution is dominated by the breakage effect induced by turbulence in the vortex region. Furthermore, simulations were conducted to analyze geometric scale effect based upon Froude similitude. The results imply that the velocity distributions were properly scaled. Slight scale effect was seen for the void fraction caused by faster dispersion of bubbles in the larger size model. The comparatively greater bubble size was predicted in the smaller model, implying significant scale effects in terms of tur-bulence and surface tension effect. It reveals that empirical correlations valid in wide range are required for the extrapolation from small-size laboratory models. 展开更多
关键词 ventilated cavity gas entrainment bubbly flow SIMULATION
下载PDF
无创正压通气治疗COPD合并呼吸衰竭的临床分析
7
作者 祁源 张静 《中国实用内科杂志》 CAS CSCD 北大核心 2006年第S2期170-170,共1页
Ⅱ型呼吸衰竭是慢性阻塞性肺疾病(COPD)晚期常见的死亡原因,而治疗呼吸衰竭的常用方法是人工呼吸机通气,随着对有创通气带来严重副反应的认识和机械通气技术的进步,实施无创通气逐渐增多。研究报告无创通气(NIPPV)能改善临床症状,纠正... Ⅱ型呼吸衰竭是慢性阻塞性肺疾病(COPD)晚期常见的死亡原因,而治疗呼吸衰竭的常用方法是人工呼吸机通气,随着对有创通气带来严重副反应的认识和机械通气技术的进步,实施无创通气逐渐增多。研究报告无创通气(NIPPV)能改善临床症状,纠正高碳酸血症和低氧血症,现已逐渐成为呼吸衰竭一线治疗方法。 展开更多
关键词 呼吸衰竭 无创通气 机械通气技术 高碳酸血症 鼻面罩 通气带 呼衰患者 人工呼吸机 动脉血气分析 低氧血症
原文传递
The structure of Circum-Tibetan Plateau Basin-Range System and the large gas provinces 被引量:15
8
作者 JIA ChengZao LI BenLiang +1 位作者 LEI YongLiang CHEN ZhuXin 《Science China Earth Sciences》 SCIE EI CAS 2013年第11期1853-1863,共11页
Northward subduction of the Cenozoic Tethys ocean caused the convergence and collision of Eurasia-Indian Plates, resulting in the lower crust thickening, the upper crust thrusting, and the Qinghai-Tibet uplifting, and... Northward subduction of the Cenozoic Tethys ocean caused the convergence and collision of Eurasia-Indian Plates, resulting in the lower crust thickening, the upper crust thrusting, and the Qinghai-Tibet uplifting, and forming the plateau landscape. In company with uplifting and northward extruding of the Tibetan plateau, the contractional tectonic deformations persistently spread outward, building a gigantic basin-range system around the Tibetan plateau. This system is herein termed as the Cir- cure-Tibetan Plateau Basin-Range System, in which the global largest diffuse and the most energetic intra-continental defor- mations were involved, and populations of inheritance foreland basins or thrust belts were developed along the margins of an- cient cratonic plates due to the effects of the cratonic amalgamation, crust differentiation, orogen rejuvenation, and basin sub- sidence. There are three primary tectonic units in the Circum-Tibet Plateau Basin-Range System, which are the reactivated an- cient orogens, the foreland thrust belts, and the miniature cratonic basins. The Circum-Tibetan Plateau Basin-Range System is a gigantic deformation system and particular Himalayan tectonic domain in central-western China and is comparable to the Tibetan Plateau. In this system, northward and eastward developments of thrust deformations exhibit an arc-shaped area along the Kunlun-Altyn-Qilian-Longmenshan mountain belts, and further expand outward to the Altai-Yinshan-Luliangshan- Huayingshan mountain belts during the Late Cenozoic sustained collision of Indo-Asia. Intense intra-continental deformations lead ancient orogens to rejuvenate, young foreland basins to form in-between orogens and cratons, and thrusts to propagate from orogens to cratons in successive order. Driven by the Eurasia-Indian collision and its far field effects, both deformation and basin-range couplings in the arc-shaped area decrease from south to north. When a single basin-range unit is focused on, deformations become younger and younger together with more and more simple structural styles from piedmonts to craton in- teriors. In the Circum-Tibetan Plateau Basin-Range System, it presents three segmented tectonic deformational patterns: prop- agating in the west, growth-overthrusting in the middle, and slip-uplifting in the east. For natural gas exploration, two tectonic units, both the Paleozoic cratonic basins and the Cenozoic foreland thrust belts, are important because hydrocarbon in cen- tral-western China is preserved mainly in the Paleozoic cratonic paleo-highs and the Meso-Cenozoic foreland thrust belts, to- gether with characteristics of multiphrase hydrocarbon generation but late accumulation and enrichment. 展开更多
关键词 Circum-Tibet Plateau Basin-Range System Himalayan movement intra-continental deformation tectonic domain natural gas resources
原文传递
Modelling Soil Greenhouse Gas Fluxes from a Broad-leaved Korean Pine Forest in Changbai Mountain: Forest-DNDC Model Validation 被引量:2
9
作者 YE Shu GUO Chuying +4 位作者 HAN Jiayin ZHANG Leiming DAI Guanhua WEN Xuefa YU Guirui 《Journal of Resources and Ecology》 CSCD 2019年第2期127-136,共10页
Fluctuations in soil greenhouse gas(GHG)are an important part of the terrestrial ecosystem carbon-nitrogen cycle,but uncertainties remain about the dynamic change and budget assessment of soil GHG flux.Using high freq... Fluctuations in soil greenhouse gas(GHG)are an important part of the terrestrial ecosystem carbon-nitrogen cycle,but uncertainties remain about the dynamic change and budget assessment of soil GHG flux.Using high frequency and consecutive soil GHG fluxes measured with an automatic dynamic chamber system,we tested the applicability of the current Forest-DNDC model in simulating soil CH4,CO2 and N2O fluxes in a temperate broad-leaved Korean pine forest at Changbai Mountain.The results showed that the Forest-DNDC model reproduced general patterns of environmental variables,however,simulated seasonal variation in soil temperature,snow melt processes and soil moisture partly deviated from measured variables,especially during the non-growing season.The modeled CH4 flux was close to the field measurement and co-varied mainly with soil temperature and snowpack.The modeled soil CO2 flux had the same seasonal trend to that of the observation along with variation in temperature,however,simulated CO2 flux in the growing season was underestimated.The modeled N2O flux attained a peak in summer due to the influence of temperature,which was apparently different from the observed peak of N2O flux in the freeze-thaw period.Meanwhile,both modeled CO2 flux and N2O flux were dampened by rainfall events.Apart from consistent estimation of annual soil CH4 flux,the annual accumulation of CO2 and N2O was underestimated.It is still necessary to further optimize model parameters and processes using long-term high-frequency observation data,especially transference of heat and water in soil and GHG producing mechanism.Continues work will improve modeling,ecosystem carbon-nitrogen budget assessment and estimation of soil GHGs flux from the site to the region. 展开更多
关键词 soil GHGs flux dynamic chamber method forest-DNDC temperate forest
原文传递
Influence of water flow on gas hydrate accumulation at cold vents 被引量:3
10
作者 CAO YunCheng SU Zheng CHEN DuoFu 《Science China Earth Sciences》 SCIE EI CAS 2013年第4期568-578,共11页
A cold vent is an area where methane-rich fluid seepage occurs. This seepage may alter the local temperature, salinity, and subsequent accumulation of the gas hydrate. Using a kinetic gas hydrate formation model and i... A cold vent is an area where methane-rich fluid seepage occurs. This seepage may alter the local temperature, salinity, and subsequent accumulation of the gas hydrate. Using a kinetic gas hydrate formation model and in situ measurement of tempera- ture, salinity and fluid flux at the southern summit of Hydrate Ridge, we simuIate the gas hydrate accumulation at three distinct fluid sites: clam, bacterial mat, and gas discharge sites. At the clam sites (pore water flux 〈 20 kg m-2 yr-1), pore water advec- tion has little influence on temperature and salinity. However, the salinity and temperature are increased (peak salinity 〉 0.8 tool kg-1) by the formation of gas hydrate causing the base of the hydrate stability zone to move gradually from -115 to -70 meters below seafloor (mbsf). The gas hydrate saturation at the clam sites is relatively high. The water flux at the bacterial mat sites ranges from 100 to 2500 kg m-2 yr-1. The water flow suppresses the increase in salinity resulting in a salinity close to or slightly higher than that of seawater (〈 0.65 mol kg-l). Heat advection by water flow increases temperature significantly, shifting the base of the hydrate stability zone to above 50 or even 3 mbsf. The gas hydrate saturation is relatively low at the bacterial mat site. At the gas discharge sites, the pore water flux could reach 10^10 kg m-2 yr-1, and the temperature could reach that of the source area in 9 min. There is no gas hydrate formation at the gas discharge sites. Our simulative analysis therefore reveals that a lower pore water flux would result in lower salinity, higher temperature, and a shallower base of the hydrate sta- bility zone. This in turn induces a lower gas hydrate formation rate, lower hydrate saturation, and eventually less gas hydrate resources. 展开更多
关键词 cold vent fluid seepage temperature SALINITY gas hydrate numerical simulation
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部