The drag coefficient is important in meteorological studies of the boundary layer because it describes the air-sea momentum flux. Eight drag coefficient schemes were assessed. These parametrizations were compared taki...The drag coefficient is important in meteorological studies of the boundary layer because it describes the air-sea momentum flux. Eight drag coefficient schemes were assessed. These parametrizations were compared taking into account data from in situ and laboratory observations.The drag coefficients determined using three schemes were consistent with the level-off phenomenon, supported by the results of laboratory studies. The drag coefficient determined using one scheme decreased at wind speeds higher than approximately 30 m s-1, in agreement with indirect measurements under typhoon conditions. In contrast, the drag coefficients determined using the other four schemes increased with wind speed, even under high wind regimes. Sensitivity tests were performed using simulations of two super typhoons in the Weather Research and Forecasting model. While the typhoon tracks were negligibly sensitive to the parametrization used, the typhoon intensities (the maximum lO-m wind speed and the minimum sea level pressure), sizes, and structure, were very sensitive to it.展开更多
A throttling experiment for the multi-hole orifice (MO) using water was conducted based on the conclusion of key parameters affecting the MO throttling performance. Testing MOs and standard orifice plates ( SO ) w...A throttling experiment for the multi-hole orifice (MO) using water was conducted based on the conclusion of key parameters affecting the MO throttling performance. Testing MOs and standard orifice plates ( SO ) were designed for the throttling experiment to compare the throttling effect using the equivalent diameter ratio (RED) and diameter ratio (RD ) as key parameters, respectively. Meanwhile, effective metrical conditions were provided for experimental accuracy. The throttling model form was determined according to the theoretical throttling model of SO. Then the unknown parameters involved were identified by experimental data. A good concordance between the modeling computation and experimental results shows a validation of the MO throtting model.展开更多
The temporal variation of ventilation coefficient was estimated and a simple model for the prediction of urban ventilation coefficient in Changsha was developed. Firstly, Pearson correlation analysis was used to inves...The temporal variation of ventilation coefficient was estimated and a simple model for the prediction of urban ventilation coefficient in Changsha was developed. Firstly, Pearson correlation analysis was used to investigate the relationship between meteorological parameters and mixing layer height during 2005-2009 in Changsha, China. Secondly, the multi-linear regression model between daytime and nighttime was adopted to predict the temporal ventilation coefficient. Thirdly, the validation of the model between the predicted and observed ventilation coefficient in 2010 was conducted. The results showed that ventilation coefficient significantly varied and remained high during daytime, while it stayed relatively constant and low during nighttime. In addition, the diurnal ventilation coefficient was distinctly negatively correlated with PM10 (particle with the diameter less than 10 μm) concentration in Changsha, China. The predicted ventilation coefficient agreed well with the observed values based on the multi-linear regression models during daytime and nighttime. The urban temporal ventilation coefficient could be accurately predicted by some simple meteorological parameters during daytime and nighttime. The ventilation coefficient played an important role in the PM10 concentration level.展开更多
A HVAC (heating ventilating and air conditioning) system is generally designed to ventilate an indoor space. In windy and snowy climates dispersed snow particles in ambient air can enter the intake duct, potentially...A HVAC (heating ventilating and air conditioning) system is generally designed to ventilate an indoor space. In windy and snowy climates dispersed snow particles in ambient air can enter the intake duct, potentially causing a serious problem. The study addresses the influence of suction volumetric flow rates, the potential discrepancy of snow intake based upon the wind direction in relation to the intake vent, and the possible difference in amounts of infiltrated snow particles in varying intake vent design and locations. The necessary characteristic quantities are defined. The simulation results show the rate of infiltration and the efficiency of the chosen intake designs. The magnitude and direction of wind influences snow infiltration significantly. The daily amount of infiltrated snow is introduced to be the characteristic measure of the infiltration in design of the HVAC systems.展开更多
A numerical method consisted of the cavitation number correction and the model coefficient correction algorithms is presented to simulate the supercavity in water tunnel considering blockage and gravity effects based ...A numerical method consisted of the cavitation number correction and the model coefficient correction algorithms is presented to simulate the supercavity in water tunnel considering blockage and gravity effects based on the Logvinovich model.A model of the minimum cavitation number is also proposed based on the dimensional analysis theory,and the minimum cavitation number is formulated based on the model and numerical results using the nonlinear least square method(NLLS).The formula is verified by experiment to some extent.展开更多
Based on the Marshall-Palmer,Weibull raindrop size distribution and Mie electromagnetic scattering model,the relationships of attenuation coefficient of terahertz(THz) atmospheric window waves with precipitation rate ...Based on the Marshall-Palmer,Weibull raindrop size distribution and Mie electromagnetic scattering model,the relationships of attenuation coefficient of terahertz(THz) atmospheric window waves with precipitation rate and temperature are studied.Furthermore,combined with the loss of electromagnetic wave transmission in free space,the attenuation of THz communication and the transmission of current mobile communication signals through rain are compared and analyzed.The results show that the attenuation coefficient of THz transmission is increased with increasing precipitation rate,the difference of attenuation coefficient at different THz window waves is small,and the maximum difference is about 3 dB.The rain attenuation of THz wave is first decreased and then increased with increasing temperature,but the temperature has little effect on it.The attenuation of THz wave through rain is much larger than that of mobile communication signal.展开更多
基金supported by the National Key Basic Research Program of China(973 Program)[grant number 2012CB417402]the Strategic Priority Research Program of the Chinese Academy of Sciences[grant number XDA11010104]+1 种基金the National Natural Science Foundation of China[grant numbers 41576013,41476021,41506023]the National High Technology Research and Development Program of China(863 Program)[grant number2013AA122803]
文摘The drag coefficient is important in meteorological studies of the boundary layer because it describes the air-sea momentum flux. Eight drag coefficient schemes were assessed. These parametrizations were compared taking into account data from in situ and laboratory observations.The drag coefficients determined using three schemes were consistent with the level-off phenomenon, supported by the results of laboratory studies. The drag coefficient determined using one scheme decreased at wind speeds higher than approximately 30 m s-1, in agreement with indirect measurements under typhoon conditions. In contrast, the drag coefficients determined using the other four schemes increased with wind speed, even under high wind regimes. Sensitivity tests were performed using simulations of two super typhoons in the Weather Research and Forecasting model. While the typhoon tracks were negligibly sensitive to the parametrization used, the typhoon intensities (the maximum lO-m wind speed and the minimum sea level pressure), sizes, and structure, were very sensitive to it.
基金the National Natural Science Foundation of China(Grant No.50578049)
文摘A throttling experiment for the multi-hole orifice (MO) using water was conducted based on the conclusion of key parameters affecting the MO throttling performance. Testing MOs and standard orifice plates ( SO ) were designed for the throttling experiment to compare the throttling effect using the equivalent diameter ratio (RED) and diameter ratio (RD ) as key parameters, respectively. Meanwhile, effective metrical conditions were provided for experimental accuracy. The throttling model form was determined according to the theoretical throttling model of SO. Then the unknown parameters involved were identified by experimental data. A good concordance between the modeling computation and experimental results shows a validation of the MO throtting model.
基金Project(51178466) supported by the National Natural Science Foundation of ChinaProject(FANEDD200545) supported by Foundation for the Author of National Excellent Doctoral Dissertation of ChinaProject(2011JQ006) supported by Fundamental Research Funds of the Central Universities of China
文摘The temporal variation of ventilation coefficient was estimated and a simple model for the prediction of urban ventilation coefficient in Changsha was developed. Firstly, Pearson correlation analysis was used to investigate the relationship between meteorological parameters and mixing layer height during 2005-2009 in Changsha, China. Secondly, the multi-linear regression model between daytime and nighttime was adopted to predict the temporal ventilation coefficient. Thirdly, the validation of the model between the predicted and observed ventilation coefficient in 2010 was conducted. The results showed that ventilation coefficient significantly varied and remained high during daytime, while it stayed relatively constant and low during nighttime. In addition, the diurnal ventilation coefficient was distinctly negatively correlated with PM10 (particle with the diameter less than 10 μm) concentration in Changsha, China. The predicted ventilation coefficient agreed well with the observed values based on the multi-linear regression models during daytime and nighttime. The urban temporal ventilation coefficient could be accurately predicted by some simple meteorological parameters during daytime and nighttime. The ventilation coefficient played an important role in the PM10 concentration level.
文摘A HVAC (heating ventilating and air conditioning) system is generally designed to ventilate an indoor space. In windy and snowy climates dispersed snow particles in ambient air can enter the intake duct, potentially causing a serious problem. The study addresses the influence of suction volumetric flow rates, the potential discrepancy of snow intake based upon the wind direction in relation to the intake vent, and the possible difference in amounts of infiltrated snow particles in varying intake vent design and locations. The necessary characteristic quantities are defined. The simulation results show the rate of infiltration and the efficiency of the chosen intake designs. The magnitude and direction of wind influences snow infiltration significantly. The daily amount of infiltrated snow is introduced to be the characteristic measure of the infiltration in design of the HVAC systems.
基金supported by the National Natural Science Foundation of China(Grant No.10832007)
文摘A numerical method consisted of the cavitation number correction and the model coefficient correction algorithms is presented to simulate the supercavity in water tunnel considering blockage and gravity effects based on the Logvinovich model.A model of the minimum cavitation number is also proposed based on the dimensional analysis theory,and the minimum cavitation number is formulated based on the model and numerical results using the nonlinear least square method(NLLS).The formula is verified by experiment to some extent.
文摘Based on the Marshall-Palmer,Weibull raindrop size distribution and Mie electromagnetic scattering model,the relationships of attenuation coefficient of terahertz(THz) atmospheric window waves with precipitation rate and temperature are studied.Furthermore,combined with the loss of electromagnetic wave transmission in free space,the attenuation of THz communication and the transmission of current mobile communication signals through rain are compared and analyzed.The results show that the attenuation coefficient of THz transmission is increased with increasing precipitation rate,the difference of attenuation coefficient at different THz window waves is small,and the maximum difference is about 3 dB.The rain attenuation of THz wave is first decreased and then increased with increasing temperature,but the temperature has little effect on it.The attenuation of THz wave through rain is much larger than that of mobile communication signal.