Taking public transit facilities (PTFs) is the major transport style in Hong Kong. Human exposure to indoor air pollutants may cause adverse health effects to the passengers. Exposure assessment on air pollutants is i...Taking public transit facilities (PTFs) is the major transport style in Hong Kong. Human exposure to indoor air pollutants may cause adverse health effects to the passengers. Exposure assessment on air pollutants is important for the control of human diseases caused by indoor air pollution. In this paper, the indoor PM10, CO and CO 2 levels in various PTFs, such as public bus, subway, railway and ferry in Hong Kong, were mea- sured. Combining with the time budget survey of Hong Kong population,the human exposures were calculated through Monte-Carlo simulation.展开更多
As the transport sector is a major source of greenhouse gas emissions, the effect of urbanization on transport CO2 emissions in developing cities has become a key issue under global climate change. Examining the case ...As the transport sector is a major source of greenhouse gas emissions, the effect of urbanization on transport CO2 emissions in developing cities has become a key issue under global climate change. Examining the case of Xi'an, this paper aims to explore the spatial distribution of commuting CO2 emissions and influencing factors in the new, urban industry zones and city centers considering Xi'an's transition from a monocentric to a polycentric city in the process of urbanization. Based on household survey data from 1501 respondents, there are obvious differences in commuting CO2 emissions between new industry zones and city centers: City centers feature lower household emissions of 2.86 kg CO2 per week, whereas new industry zones generally have higher household emissions of 3.20 kg CO2 per week. Contrary to previous research results, not all new industry zones have high levels of CO2 emissions; with the rapid development of various types of industries, even a minimum level of household emissions of 2.53 kg CO2 per week is possible. The uneven distribution of commuting CO2 emissions is not uniformly affected by spatial parameters such as job-housing balance, residential density, employment density, and land use diversity. Optimum combination of the spatial parameters and travel pattern along with corresponding transport infrastructure construction may be an appropriate path to reduction and control of emissions from commuting.展开更多
文摘Taking public transit facilities (PTFs) is the major transport style in Hong Kong. Human exposure to indoor air pollutants may cause adverse health effects to the passengers. Exposure assessment on air pollutants is important for the control of human diseases caused by indoor air pollution. In this paper, the indoor PM10, CO and CO 2 levels in various PTFs, such as public bus, subway, railway and ferry in Hong Kong, were mea- sured. Combining with the time budget survey of Hong Kong population,the human exposures were calculated through Monte-Carlo simulation.
基金funded by National Natural Science Foundation of China(51178055)Asia Pacific Network for Global Change Research(1094801)
文摘As the transport sector is a major source of greenhouse gas emissions, the effect of urbanization on transport CO2 emissions in developing cities has become a key issue under global climate change. Examining the case of Xi'an, this paper aims to explore the spatial distribution of commuting CO2 emissions and influencing factors in the new, urban industry zones and city centers considering Xi'an's transition from a monocentric to a polycentric city in the process of urbanization. Based on household survey data from 1501 respondents, there are obvious differences in commuting CO2 emissions between new industry zones and city centers: City centers feature lower household emissions of 2.86 kg CO2 per week, whereas new industry zones generally have higher household emissions of 3.20 kg CO2 per week. Contrary to previous research results, not all new industry zones have high levels of CO2 emissions; with the rapid development of various types of industries, even a minimum level of household emissions of 2.53 kg CO2 per week is possible. The uneven distribution of commuting CO2 emissions is not uniformly affected by spatial parameters such as job-housing balance, residential density, employment density, and land use diversity. Optimum combination of the spatial parameters and travel pattern along with corresponding transport infrastructure construction may be an appropriate path to reduction and control of emissions from commuting.