汽轮机通流部分故障特征数据较多、故障类型复杂,很难建立精确的机理模型。提出一种基于加权最小二乘支持向量机(Weighted Least Squares Support Vector Machines,WLS-SVM)的改进算法,该算法用输出变量的留一交叉检验误差取代原有误差...汽轮机通流部分故障特征数据较多、故障类型复杂,很难建立精确的机理模型。提出一种基于加权最小二乘支持向量机(Weighted Least Squares Support Vector Machines,WLS-SVM)的改进算法,该算法用输出变量的留一交叉检验误差取代原有误差确定加权系数,解决了WLS-SVM由于加权系数与模型支持值相互影响,样本在剔除与不剔除之间反复变化而不收敛的问题。实验结果表明该方法能有效地剔除异常样本,减少故障特征量的数目,提高了校正模型的稳健性及WLS-SVM特征预测的速度和预测的精度。展开更多
文摘汽轮机通流部分故障特征数据较多、故障类型复杂,很难建立精确的机理模型。提出一种基于加权最小二乘支持向量机(Weighted Least Squares Support Vector Machines,WLS-SVM)的改进算法,该算法用输出变量的留一交叉检验误差取代原有误差确定加权系数,解决了WLS-SVM由于加权系数与模型支持值相互影响,样本在剔除与不剔除之间反复变化而不收敛的问题。实验结果表明该方法能有效地剔除异常样本,减少故障特征量的数目,提高了校正模型的稳健性及WLS-SVM特征预测的速度和预测的精度。