The dynamics of the Cl+SiH4 reaction has been studied using the universal crossed molecular beam method. Angular resolved time-of-flight spectra have been measured for the channel SiH3Cl+H. Product angular distribut...The dynamics of the Cl+SiH4 reaction has been studied using the universal crossed molecular beam method. Angular resolved time-of-flight spectra have been measured for the channel SiH3Cl+H. Product angular distributions as well as energy distributions in the center-ofmass frame were determined for the channel. Experimental results show that the SiH3Cl product is mainly backward scattered relative to the Cl atom beam direction, suggesting that the channel takes place via a typical SN2 type reaction mechanism.展开更多
基金This work is supported by the Chinese Academy of Sciences and the National Natural Science Foundation of China and the Ministry of Science and Technology.
文摘The dynamics of the Cl+SiH4 reaction has been studied using the universal crossed molecular beam method. Angular resolved time-of-flight spectra have been measured for the channel SiH3Cl+H. Product angular distributions as well as energy distributions in the center-ofmass frame were determined for the channel. Experimental results show that the SiH3Cl product is mainly backward scattered relative to the Cl atom beam direction, suggesting that the channel takes place via a typical SN2 type reaction mechanism.