As for the coal seam with high stress,high gas and low permeability,a single technology cannot prevent the complex dynamic disasters.Because of this,the study proposes a new method of pressure-relief and permeability-...As for the coal seam with high stress,high gas and low permeability,a single technology cannot prevent the complex dynamic disasters.Because of this,the study proposes a new method of pressure-relief and permeability-increase technology of the high liquid–solid coupling blast.Through coal seam injection and charging structure change,the paper fully works out the dual functions of the water and explosion.Using the theoretical calculation,numerical simulation and physical experiments,we obtained that the initial blasting stress,displacement and overpressure of the liquid–solid coupling blast are much better than that of ordinary blasting.The technology has been used in the relative coal mine,and the application results show that the technique has effectively prevented the coal and gas outburst,which has a wide range of application.展开更多
A novel non-coherent detection scheme for differential frequency hopping(DFH)system is proposedin asynchronous multi-user environments over Rayleigh-fading channels.The synchronous and asyn-chronous multi-user perform...A novel non-coherent detection scheme for differential frequency hopping(DFH)system is proposedin asynchronous multi-user environments over Rayleigh-fading channels.The synchronous and asyn-chronous multi-user performances of DFH with the conventional detection scheme and this novel detectionscheme are analyzed,respectively.The performance results are validated with simulation.The results ofanalyses and simulations prove two conclusions.Firstly,the performance of asynchronous multi-user DFHsystem overcomes that of synchronous multi-user DFH system over Rayleigh-fading channel.Secondly,the novel detection scheme can achieve better performance than the conventional non-coherent detectionscheme in asynchronous multi-user environments.展开更多
Difficulties with soft coal seams having a high gas content and high stress levels can be addressed by a technology of pressure relief and permeability increase.Slotting the seam by auxiliary drilling with a water jet...Difficulties with soft coal seams having a high gas content and high stress levels can be addressed by a technology of pressure relief and permeability increase.Slotting the seam by auxiliary drilling with a water jet that breaks the coal and slots the coal seam during the process of retreat drilling achieves pressure relief and permeability increase.Improved efficiency of gas extraction from a field test,high gas coal seam was observed.Investigating the theory of pressure relief and permeability increase required analyzing the characteristics of the double power slotting process and the effects of coal pressure relief and permeability increase.The influence of confining pressure on coal physical properties was examined by using FLAC3D software code to simulate changes of coal stress within the tool destruction area.The double power joint drilling method was modeled.Field experiments were performed and the effects are analyzed.This research shows that there is an ''islanding effect'' in front of the joint double power drill and slotting equipment.The failure strength of the coal seam is substantially reduced within the tool destruction area.Drilling depths are increased by 72% and the diameter of the borehole is increased by 30%.The amount of powdered coal extracted from the drill head increases by 17 times when using the new method.A 30 day total flow measurement from the double power drilled and slotted bores showed that gas extraction increased by 1.3 times compared to the standard drilled bores.Gas concentrations increased from 30% to 60% and were more stable so the overall extraction efficiency increased by a factor of two times.展开更多
基金provided by the National Eleventh Five-Year scientific and Technological Support Plan Subject of China (No.2007BAK29B01)the National Natural Science Foundation (No.50534090)+2 种基金the National Key Basic Research Development Program of China (No.2011CB201205)State Key Laboratory of Coal Resources and Mine Safety of China University of Mining Technology of China (No.SKLCRSM08X03)the Youth Science and Technology Fund of China University of Mining and Technology (No.JGY101605)
文摘As for the coal seam with high stress,high gas and low permeability,a single technology cannot prevent the complex dynamic disasters.Because of this,the study proposes a new method of pressure-relief and permeability-increase technology of the high liquid–solid coupling blast.Through coal seam injection and charging structure change,the paper fully works out the dual functions of the water and explosion.Using the theoretical calculation,numerical simulation and physical experiments,we obtained that the initial blasting stress,displacement and overpressure of the liquid–solid coupling blast are much better than that of ordinary blasting.The technology has been used in the relative coal mine,and the application results show that the technique has effectively prevented the coal and gas outburst,which has a wide range of application.
基金the National High Technology Research and Development Programme of China(No2003AA12331006)the National Natural Science Foundation Of China(No60502010)
文摘A novel non-coherent detection scheme for differential frequency hopping(DFH)system is proposedin asynchronous multi-user environments over Rayleigh-fading channels.The synchronous and asyn-chronous multi-user performances of DFH with the conventional detection scheme and this novel detectionscheme are analyzed,respectively.The performance results are validated with simulation.The results ofanalyses and simulations prove two conclusions.Firstly,the performance of asynchronous multi-user DFHsystem overcomes that of synchronous multi-user DFH system over Rayleigh-fading channel.Secondly,the novel detection scheme can achieve better performance than the conventional non-coherent detectionscheme in asynchronous multi-user environments.
基金supports provided by the National Key Basic Research and Development Program of China (No. 2011CB201205)the National Natural Science Foundation of China (No. 51074161)the Independent research of State Key Laboratory of Coal Resources and Mine Safety of China University of Mining & Technology (No. SKLCRSM08X03)
文摘Difficulties with soft coal seams having a high gas content and high stress levels can be addressed by a technology of pressure relief and permeability increase.Slotting the seam by auxiliary drilling with a water jet that breaks the coal and slots the coal seam during the process of retreat drilling achieves pressure relief and permeability increase.Improved efficiency of gas extraction from a field test,high gas coal seam was observed.Investigating the theory of pressure relief and permeability increase required analyzing the characteristics of the double power slotting process and the effects of coal pressure relief and permeability increase.The influence of confining pressure on coal physical properties was examined by using FLAC3D software code to simulate changes of coal stress within the tool destruction area.The double power joint drilling method was modeled.Field experiments were performed and the effects are analyzed.This research shows that there is an ''islanding effect'' in front of the joint double power drill and slotting equipment.The failure strength of the coal seam is substantially reduced within the tool destruction area.Drilling depths are increased by 72% and the diameter of the borehole is increased by 30%.The amount of powdered coal extracted from the drill head increases by 17 times when using the new method.A 30 day total flow measurement from the double power drilled and slotted bores showed that gas extraction increased by 1.3 times compared to the standard drilled bores.Gas concentrations increased from 30% to 60% and were more stable so the overall extraction efficiency increased by a factor of two times.