A systematic and generic procedure for the determination of the reasonable finished state of self-anchored suspension bridges is proposed, the realization of which is mainly through adjustment of the hanger tensions. ...A systematic and generic procedure for the determination of the reasonable finished state of self-anchored suspension bridges is proposed, the realization of which is mainly through adjustment of the hanger tensions. The initial hanger tensions are first obtained through an iterative analysis by combining the girder-tower-only finite element(FE) model with the analytical program for shape finding of the spatial cable system. These initial hanger tensions, together with the corresponding cable coordinates and internal forces, are then included into the FE model of the total bridge system, the nonlinear analysis of which involves the optimization technique. Calculations are repeated until the optimization algorithm converges to the most optimal hanger tensions(i.e. the desired reasonable finished bridge state). The "temperature rigid arm" is introduced to offset the unavoidable initial deformations of the girder and tower, which are due to the huge axial forces originated from the main cable. Moreover, by changing the stiffness coefficient K in the girder-tower-only FE model, the stiffness proportion of the main girder, the tower or the cable subsystem in the whole structural system could be adjusted according to the design intentions. The effectiveness of the proposed method is examined and demonstrated by one simple tutorial example and one self-anchored suspension bridge.展开更多
One of eight gates of the Pearl River Estuary,the Yamen Inlet is a bedrock channel mouth connecting the Huangmao Sea and Yamen Channel.The wider water surfaces of the upper and lower reaches of the entrance produce a ...One of eight gates of the Pearl River Estuary,the Yamen Inlet is a bedrock channel mouth connecting the Huangmao Sea and Yamen Channel.The wider water surfaces of the upper and lower reaches of the entrance produce a unique bidirectional asymmetrical jet system.Using observed hydrology and historical charts,the ECOMSED model was applied in morphodynamic analysis of the dynamic structures and dynamic equilibrium of the Yamen jet system and its effect on sedimentation.It was found that (1) the nonlinear interaction of Yamen dynamic structures could not be ignored,as while the Coriolis force and friction force were generally of the same order of magnitude,the effect of friction force was greater;(2) the bidirectional asymmetrical jet system was flood preferential flow to the north of the channel mouth and ebb preferential flow to the south;and (3) the bidirectional asymmetrical jet system was the dominant factor in the long term stability of the Yamen deep trough.展开更多
Quantum circuit model has been widely explored for various quantum applications such as Shors algorithm and Grovers searching algorithm.Most of previous algorithms are based on the qubit systems.Herein a proposal for ...Quantum circuit model has been widely explored for various quantum applications such as Shors algorithm and Grovers searching algorithm.Most of previous algorithms are based on the qubit systems.Herein a proposal for a universal circuit is given based on the qudit system,which is larger and can store more information.In order to prove its universality for quantum applications,an explicit set of one-qudit and two-qudit gates is provided for the universal qudit computation.The one-qudit gates are general rotation for each two-dimensional subspace while the two-qudit gates are their controlled extensions.In comparison to previous quantum qudit logical gates,each primitive qudit gate is only dependent on two free parameters and may be easily implemented.In experimental implementation,multilevel ions with the linear ion trap model are used to build the qudit systems and use the coupling of neighbored levels for qudit gates.The controlled qudit gates may be realized with the interactions of internal and external coordinates of the ion.展开更多
基金Project(20133204120015) supported by Specialized Research Fund for the Doctoral Program of Higher Education of ChinaProject(12KJB560003) supported by the Natural Science Foundation of the Higher Education Institution of Jiangsu Province,China
文摘A systematic and generic procedure for the determination of the reasonable finished state of self-anchored suspension bridges is proposed, the realization of which is mainly through adjustment of the hanger tensions. The initial hanger tensions are first obtained through an iterative analysis by combining the girder-tower-only finite element(FE) model with the analytical program for shape finding of the spatial cable system. These initial hanger tensions, together with the corresponding cable coordinates and internal forces, are then included into the FE model of the total bridge system, the nonlinear analysis of which involves the optimization technique. Calculations are repeated until the optimization algorithm converges to the most optimal hanger tensions(i.e. the desired reasonable finished bridge state). The "temperature rigid arm" is introduced to offset the unavoidable initial deformations of the girder and tower, which are due to the huge axial forces originated from the main cable. Moreover, by changing the stiffness coefficient K in the girder-tower-only FE model, the stiffness proportion of the main girder, the tower or the cable subsystem in the whole structural system could be adjusted according to the design intentions. The effectiveness of the proposed method is examined and demonstrated by one simple tutorial example and one self-anchored suspension bridge.
基金supported by Guangdong Natural Science Foundation (Grant No. 9151027501000111)‘908’ Marine Survey Project (Grant No. 908-02-01-04)National Natural Science Foundation of China (Grant No. 50839005)
文摘One of eight gates of the Pearl River Estuary,the Yamen Inlet is a bedrock channel mouth connecting the Huangmao Sea and Yamen Channel.The wider water surfaces of the upper and lower reaches of the entrance produce a unique bidirectional asymmetrical jet system.Using observed hydrology and historical charts,the ECOMSED model was applied in morphodynamic analysis of the dynamic structures and dynamic equilibrium of the Yamen jet system and its effect on sedimentation.It was found that (1) the nonlinear interaction of Yamen dynamic structures could not be ignored,as while the Coriolis force and friction force were generally of the same order of magnitude,the effect of friction force was greater;(2) the bidirectional asymmetrical jet system was flood preferential flow to the north of the channel mouth and ebb preferential flow to the south;and (3) the bidirectional asymmetrical jet system was the dominant factor in the long term stability of the Yamen deep trough.
基金supported by the National Natural Science Foundation of China(Grant Nos.61303039 and 11226336)the Fundamental Research Funds for the Central Universities(Grant No.2682014CX095)the Science Foundation Ireland(SFI)under the International Strategic CooperationAward Grant Number SFI/13/ISCA/2845
文摘Quantum circuit model has been widely explored for various quantum applications such as Shors algorithm and Grovers searching algorithm.Most of previous algorithms are based on the qubit systems.Herein a proposal for a universal circuit is given based on the qudit system,which is larger and can store more information.In order to prove its universality for quantum applications,an explicit set of one-qudit and two-qudit gates is provided for the universal qudit computation.The one-qudit gates are general rotation for each two-dimensional subspace while the two-qudit gates are their controlled extensions.In comparison to previous quantum qudit logical gates,each primitive qudit gate is only dependent on two free parameters and may be easily implemented.In experimental implementation,multilevel ions with the linear ion trap model are used to build the qudit systems and use the coupling of neighbored levels for qudit gates.The controlled qudit gates may be realized with the interactions of internal and external coordinates of the ion.