The alpine meadow ecosystem accounts for 27%of the total area of the Tibetan Plateau and is also one of the most important vegetation types.The Dangxiong alpine meadow ecosystem,located in the south-central part of th...The alpine meadow ecosystem accounts for 27%of the total area of the Tibetan Plateau and is also one of the most important vegetation types.The Dangxiong alpine meadow ecosystem,located in the south-central part of the Tibetan Plateau,is a typical example.To understand the carbon and water fluxes,water use efficiency(WUE),and their responses to future climate change for the alpine meadow ecosystem in the Dangxiong area,two parameter estimation methods,the Model-independent Parameter Estimation(PEST)and the Dynamic Dimensions Search(DDS),were used to optimize the Biome-BGC model.Then,the gross primary productivity(GPP)and evapotranspiration(ET)were simulated.The results show that the DDS parameter calibration method has a better performance.The annual GPP and ET show an increasing trend,while the WUE shows a decreasing trend.Meanwhile,ET and GPP reach their peaks in July and August,respectively,and WUE shows a“dual-peak”pattern,reaching peaks in May and November.Furthermore,according to the simulation results for the next nearly 100 years,the ensemble average GPP and ET exhibit a significant increasing trend,and the growth rate under the SSP5–8.5 scenario is greater than that under the SSP2–4.5 scenario.WUE shows an increasing trend under the SSP2–4.5 scenario and a significant increasing trend under the SSP5–8.5 scenario.This study has important scientific significance for carbon and water cycle prediction and vegetation ecological protection on the Tibetan Plateau.展开更多
Few studies are conducted to quantify the effects of enhanced N deposition on soil nitrous oxide (N2O) emission and methane (CH4) uptake in the meadow steppe of Inner Mongolia, China. A two-year field experiment w...Few studies are conducted to quantify the effects of enhanced N deposition on soil nitrous oxide (N2O) emission and methane (CH4) uptake in the meadow steppe of Inner Mongolia, China. A two-year field experiment was conducted to assess the effects of nitrogen (N) deposition rates (0, 10, and 20 kg N ha-1 year-1 as (NH4)2SO4) on soil N2O and CH4 fluxes. The seasonal and diurnal variations of soil N2O and CH4 fluxes were determined using the static chamber-gas chromatography method during the two growing seasons of 2008 and 2009. Soil temperature, moisture and mineral N (NH4+-N and NO3-N) concentration were simultaneously measured. Results showed that low level of (NH4)2SO4 (10 kg N ha-1 year-1) did not significantly affect soil CH4 and N20 fluxes and other variables. High level of (NH4)2SO4 (20 kg N ha-1 year-1) significantly increased soil NO3-N concentration by 24.1% to 35.6%, decreased soil CH4 uptake by an average of 20.1%, and significantly promoted soil N2O emission by an average of 98.2%. Soil N2O emission responded more strongly to the added N compared to CH4 uptake. However, soil CH4 fluxes were mainly driven by soil moisture, followed by soil NO3--N concentration. Soil N2O fluxes were mainly driven by soil temperature, followed by soil moisture. Soil inorganic N availability was a key integrator of soil CH4 uptake and N2O emission. These results suggest that the changes of availability of inorganic N induced by the increased N deposition in soil may affect the CH4 and N2O fluxes in the cold semi-arid meadow steppe over the short term.展开更多
基金supported by the Second Comprehensive Scientific Research Survey on the Tibetan Plateau[grant number 2019QZKK0103]the National Natural Science Foundation of China[grant numbers 42375071 and 42230610].
文摘The alpine meadow ecosystem accounts for 27%of the total area of the Tibetan Plateau and is also one of the most important vegetation types.The Dangxiong alpine meadow ecosystem,located in the south-central part of the Tibetan Plateau,is a typical example.To understand the carbon and water fluxes,water use efficiency(WUE),and their responses to future climate change for the alpine meadow ecosystem in the Dangxiong area,two parameter estimation methods,the Model-independent Parameter Estimation(PEST)and the Dynamic Dimensions Search(DDS),were used to optimize the Biome-BGC model.Then,the gross primary productivity(GPP)and evapotranspiration(ET)were simulated.The results show that the DDS parameter calibration method has a better performance.The annual GPP and ET show an increasing trend,while the WUE shows a decreasing trend.Meanwhile,ET and GPP reach their peaks in July and August,respectively,and WUE shows a“dual-peak”pattern,reaching peaks in May and November.Furthermore,according to the simulation results for the next nearly 100 years,the ensemble average GPP and ET exhibit a significant increasing trend,and the growth rate under the SSP5–8.5 scenario is greater than that under the SSP2–4.5 scenario.WUE shows an increasing trend under the SSP2–4.5 scenario and a significant increasing trend under the SSP5–8.5 scenario.This study has important scientific significance for carbon and water cycle prediction and vegetation ecological protection on the Tibetan Plateau.
基金supported by the National Natural Science Foundation of China (No. 31300375)the National Non-Profit Institute Research Grant of the Chinese Academy of Agricultural Sciences (No. BSRF201505)the Key Project of the National Scientific and Technical Support Program, China (No. 2013BAC03B03)
文摘Few studies are conducted to quantify the effects of enhanced N deposition on soil nitrous oxide (N2O) emission and methane (CH4) uptake in the meadow steppe of Inner Mongolia, China. A two-year field experiment was conducted to assess the effects of nitrogen (N) deposition rates (0, 10, and 20 kg N ha-1 year-1 as (NH4)2SO4) on soil N2O and CH4 fluxes. The seasonal and diurnal variations of soil N2O and CH4 fluxes were determined using the static chamber-gas chromatography method during the two growing seasons of 2008 and 2009. Soil temperature, moisture and mineral N (NH4+-N and NO3-N) concentration were simultaneously measured. Results showed that low level of (NH4)2SO4 (10 kg N ha-1 year-1) did not significantly affect soil CH4 and N20 fluxes and other variables. High level of (NH4)2SO4 (20 kg N ha-1 year-1) significantly increased soil NO3-N concentration by 24.1% to 35.6%, decreased soil CH4 uptake by an average of 20.1%, and significantly promoted soil N2O emission by an average of 98.2%. Soil N2O emission responded more strongly to the added N compared to CH4 uptake. However, soil CH4 fluxes were mainly driven by soil moisture, followed by soil NO3--N concentration. Soil N2O fluxes were mainly driven by soil temperature, followed by soil moisture. Soil inorganic N availability was a key integrator of soil CH4 uptake and N2O emission. These results suggest that the changes of availability of inorganic N induced by the increased N deposition in soil may affect the CH4 and N2O fluxes in the cold semi-arid meadow steppe over the short term.