In this paper,we introduce one full-duplex(FD) relaying transmission scheme for high speed railway and compare its ergodic capacity and outage performance with half-duplex(HD) relaying scheme. Both decode-and-forward(...In this paper,we introduce one full-duplex(FD) relaying transmission scheme for high speed railway and compare its ergodic capacity and outage performance with half-duplex(HD) relaying scheme. Both decode-and-forward(DF) amplify-and-forward(AF) relay modes are considered. Moreover,the carriage penetration loss(CPL) and the self-interference(SI) cancellation ratio are investigated. We derive the closed-form expressions for the outage probability and ergodic capacity of both HD and FD relay transmission schemes. It is shown that when CPL is larger than a certain level,the FD relay can achieve better performance in terms of capacity and keep the outage probability in a low level. It is also found that three factors: AF or DF modes,CPL and SI cancellation ratio,can have impact on capacity performance,and that CPL is one decisive factor. Our results can provide theoretical supports for development and deployment of future wireless communication systems on high speed railways.展开更多
In this paper a comprehensive review of heat transfer enhancement through microchannels has been presented. Over the past few years due to multifunetion, shrinking package size and high power dissipation, the heat flu...In this paper a comprehensive review of heat transfer enhancement through microchannels has been presented. Over the past few years due to multifunetion, shrinking package size and high power dissipation, the heat flux per unit area has increased significantly. Microchannels, with their large heat transfer surface to volume ratio and their small volumes, have shown a good thermal performance. Microchannels have been proven to be a high per- formaace cooling technique which is able to dissipate heat flux effectively from localized hot spots over small surface area. A good amount of heat transfer augmentation techniques have been reported on flow disruption through microchannel. These techniques promote free stream separation at the leading edge which results in boundary layer development and enhanced mixing leading to increased heat transfer. Flow disruption can be achieved through passive surface modifications, such as, shape of channel, dimple surfaces, ribs, cavities, groove structures, porous medium, etc. Combined effects of these geometrical configurations in heat transfer augmenta- tion are also reported in the literature. In this paper recent developments in experimental and numerical simula- tions of single-phase liquid cooled microchannel have been discussed to analyze the pressure drop, friction and heat transfer characteristics due to different flow conditions, roughness structure and passive surface modifica- tions. It has been observed that the flow disruption techniques are effective for heat transfer enhancement with lower penalties of increased pressure drop. The review concludes with suggestions for future research in this area.展开更多
基金supported by the National Natural Science Foundation of China(No.61571037)by the Fundamental Research Funds for the Central Universities(No.2016JBZ006)
文摘In this paper,we introduce one full-duplex(FD) relaying transmission scheme for high speed railway and compare its ergodic capacity and outage performance with half-duplex(HD) relaying scheme. Both decode-and-forward(DF) amplify-and-forward(AF) relay modes are considered. Moreover,the carriage penetration loss(CPL) and the self-interference(SI) cancellation ratio are investigated. We derive the closed-form expressions for the outage probability and ergodic capacity of both HD and FD relay transmission schemes. It is shown that when CPL is larger than a certain level,the FD relay can achieve better performance in terms of capacity and keep the outage probability in a low level. It is also found that three factors: AF or DF modes,CPL and SI cancellation ratio,can have impact on capacity performance,and that CPL is one decisive factor. Our results can provide theoretical supports for development and deployment of future wireless communication systems on high speed railways.
文摘In this paper a comprehensive review of heat transfer enhancement through microchannels has been presented. Over the past few years due to multifunetion, shrinking package size and high power dissipation, the heat flux per unit area has increased significantly. Microchannels, with their large heat transfer surface to volume ratio and their small volumes, have shown a good thermal performance. Microchannels have been proven to be a high per- formaace cooling technique which is able to dissipate heat flux effectively from localized hot spots over small surface area. A good amount of heat transfer augmentation techniques have been reported on flow disruption through microchannel. These techniques promote free stream separation at the leading edge which results in boundary layer development and enhanced mixing leading to increased heat transfer. Flow disruption can be achieved through passive surface modifications, such as, shape of channel, dimple surfaces, ribs, cavities, groove structures, porous medium, etc. Combined effects of these geometrical configurations in heat transfer augmenta- tion are also reported in the literature. In this paper recent developments in experimental and numerical simula- tions of single-phase liquid cooled microchannel have been discussed to analyze the pressure drop, friction and heat transfer characteristics due to different flow conditions, roughness structure and passive surface modifica- tions. It has been observed that the flow disruption techniques are effective for heat transfer enhancement with lower penalties of increased pressure drop. The review concludes with suggestions for future research in this area.