The pressure drop of gas-liquid two-phase flow in microchannel is of fundamental importance in heat and mass transfer processes. In this work,the pressure drop of gas-liquid two-phase flow in horizontal rectangular cr...The pressure drop of gas-liquid two-phase flow in microchannel is of fundamental importance in heat and mass transfer processes. In this work,the pressure drop of gas-liquid two-phase flow in horizontal rectangular cross-section microchannels was measured by a pressure differential transducer system. Water,ethanol and n-propanol were used as liquid phase to study the effects of capillary number on pressure drop;air was used as the gas phase. Four microchannels with various dimensions of 100 μm× 200 μm,100 μm× 400 μm,100 μm× 800 μm and 100 μm× 2000 μm(depth × width) were used for determining the influence of configuration on the pressure drop. Experimental results showed that in micro-scale,the capillary number also affected the pressure drop remarkably,and in spite of only one-fold difference in aspect ratio,the variation of pressure drop reached up to near three times under the same experimental conditions. Taking the effects of aspect ratio and surface tension into account,a modi-fied correlation for Chisholm parameter C in the Chisholm model was proposed for predicting the frictional multi-plier,and the predicted values by the proposed correlation showed a satisfactory agreement with experimental data.展开更多
Experiments of de-ionized water flowing in microchannels made in copper blocks were carried out to obtain pressure drop and friction factor and to investigate any possible discrepancies from conventional theory. Three...Experiments of de-ionized water flowing in microchannels made in copper blocks were carried out to obtain pressure drop and friction factor and to investigate any possible discrepancies from conventional theory. Three channels with widths of 0.5 mm, 1.0 mm, 1.71 mm, a depth of 0.39 mm and a length of 62 mm were tested. For adiabatic tests, the temperature of the working fluid was maintained at 30 ℃, 60 ℃ and 90 ℃ without any heat fluxes supplied to the test section. The experimental conditions covered a range of Reynolds numbers from 234 to 3,430. For non-adiabatic tests, the inlet temperature and heat flux applied were 30 ℃ and 147 kW/m2 and only for the 0.635 mm channel. The friction factors obtained for the widest channel (Dh = 0.635 mm) are reported for both adiabatic and non-adiabatic experiments to assess possible temperature effects. The paper focuses on the effect of hydraulic diameter on pressure drop and friction factor over the experimental conditions. The pressure drop was found to decrease as the inlet temperature was increased, while the friction factors for the three test sections did not show significant differences. The experimental friction factors were in reasonable agreement with conventional developing flow theory. The effect of temperature on friction factor was not considerable as the friction factor with and without heat flux was almost the same.展开更多
New industrial applications call for new methods and new ideas in signal analysis. Wavelet packets are new tools in industrial applications and they have just recently appeared in projects and patents. In training neu...New industrial applications call for new methods and new ideas in signal analysis. Wavelet packets are new tools in industrial applications and they have just recently appeared in projects and patents. In training neural networks, for the sake of dimensionality and of ratio of time, compact information is needed. This paper deals with simultaneous noise suppression and signal compression of quasi-harmonic signals. A quasi-harmonic signal is a signal with one dominant harmonic and some more sub harmonics in superposition. Such signals often occur in rail vehicle systems, in which noisy signals are present. Typically, they are signals which come from rail overhead power lines and are generated by intermodulation phenomena and radio interferences. An important task is to monitor and recognize them. This paper proposes an algorithm to differentiate discrete signals from their noisy observations using a library of nonorthonormal bases. The algorithm combines the shrinkage technique and techniques in regression analysis using Shannon Entropy function and Cross Entropy function to select the best discernable bases. Cosine and sine wavelet bases in wavelet packets are used. The algorithm is totally general and can be used in many industrial applications. The effectiveness of the proposed method consists of using as few as possible samples of the measured signal and in the meantime highlighting the difference between the noise and the desired signal. The problem is a difficult one, but well posed. In fact, compression reduces the level of the measured noise and undesired signals but introduces the well known compression noise. The goal is to extract a coherent signal from the measured signal which will be "well represented" by suitable waveforms and a noisy signal or incoherent signal which cannot be "compressed well" by the waveforms. Recursive residual iterations with cosine and sine bases allow the extraction of elements of the required signal and the noise. The algorithm that has been developed is utilized as a filter to extract features for training neural networks. It is currently integrated in the inferential modelling platform of the unit for Advanced Control and Simulation Solutions within ABB's industry division. An application using real measured data from an electrical railway line is presented to illustrate and analyze the effectiveness of the proposed method. Another industrial application in fault detection, in which coherent and incoherent signals are univocally visible, is also shown.展开更多
基金Supported by the National Natural Science Foundation of China (20876107) the Opening Project of State Key Laboratory of Chemical Engineering (SKL-ChE-08B06)
文摘The pressure drop of gas-liquid two-phase flow in microchannel is of fundamental importance in heat and mass transfer processes. In this work,the pressure drop of gas-liquid two-phase flow in horizontal rectangular cross-section microchannels was measured by a pressure differential transducer system. Water,ethanol and n-propanol were used as liquid phase to study the effects of capillary number on pressure drop;air was used as the gas phase. Four microchannels with various dimensions of 100 μm× 200 μm,100 μm× 400 μm,100 μm× 800 μm and 100 μm× 2000 μm(depth × width) were used for determining the influence of configuration on the pressure drop. Experimental results showed that in micro-scale,the capillary number also affected the pressure drop remarkably,and in spite of only one-fold difference in aspect ratio,the variation of pressure drop reached up to near three times under the same experimental conditions. Taking the effects of aspect ratio and surface tension into account,a modi-fied correlation for Chisholm parameter C in the Chisholm model was proposed for predicting the frictional multi-plier,and the predicted values by the proposed correlation showed a satisfactory agreement with experimental data.
文摘Experiments of de-ionized water flowing in microchannels made in copper blocks were carried out to obtain pressure drop and friction factor and to investigate any possible discrepancies from conventional theory. Three channels with widths of 0.5 mm, 1.0 mm, 1.71 mm, a depth of 0.39 mm and a length of 62 mm were tested. For adiabatic tests, the temperature of the working fluid was maintained at 30 ℃, 60 ℃ and 90 ℃ without any heat fluxes supplied to the test section. The experimental conditions covered a range of Reynolds numbers from 234 to 3,430. For non-adiabatic tests, the inlet temperature and heat flux applied were 30 ℃ and 147 kW/m2 and only for the 0.635 mm channel. The friction factors obtained for the widest channel (Dh = 0.635 mm) are reported for both adiabatic and non-adiabatic experiments to assess possible temperature effects. The paper focuses on the effect of hydraulic diameter on pressure drop and friction factor over the experimental conditions. The pressure drop was found to decrease as the inlet temperature was increased, while the friction factors for the three test sections did not show significant differences. The experimental friction factors were in reasonable agreement with conventional developing flow theory. The effect of temperature on friction factor was not considerable as the friction factor with and without heat flux was almost the same.
文摘New industrial applications call for new methods and new ideas in signal analysis. Wavelet packets are new tools in industrial applications and they have just recently appeared in projects and patents. In training neural networks, for the sake of dimensionality and of ratio of time, compact information is needed. This paper deals with simultaneous noise suppression and signal compression of quasi-harmonic signals. A quasi-harmonic signal is a signal with one dominant harmonic and some more sub harmonics in superposition. Such signals often occur in rail vehicle systems, in which noisy signals are present. Typically, they are signals which come from rail overhead power lines and are generated by intermodulation phenomena and radio interferences. An important task is to monitor and recognize them. This paper proposes an algorithm to differentiate discrete signals from their noisy observations using a library of nonorthonormal bases. The algorithm combines the shrinkage technique and techniques in regression analysis using Shannon Entropy function and Cross Entropy function to select the best discernable bases. Cosine and sine wavelet bases in wavelet packets are used. The algorithm is totally general and can be used in many industrial applications. The effectiveness of the proposed method consists of using as few as possible samples of the measured signal and in the meantime highlighting the difference between the noise and the desired signal. The problem is a difficult one, but well posed. In fact, compression reduces the level of the measured noise and undesired signals but introduces the well known compression noise. The goal is to extract a coherent signal from the measured signal which will be "well represented" by suitable waveforms and a noisy signal or incoherent signal which cannot be "compressed well" by the waveforms. Recursive residual iterations with cosine and sine bases allow the extraction of elements of the required signal and the noise. The algorithm that has been developed is utilized as a filter to extract features for training neural networks. It is currently integrated in the inferential modelling platform of the unit for Advanced Control and Simulation Solutions within ABB's industry division. An application using real measured data from an electrical railway line is presented to illustrate and analyze the effectiveness of the proposed method. Another industrial application in fault detection, in which coherent and incoherent signals are univocally visible, is also shown.