文摘遥感图像目标具有多尺度、大横纵比、多角度等特性,给传统的目标检测方法带来了新的挑战.针对现有方法应用于目标尺度小、横纵比例不均衡的遥感图像时存在的精度下降问题,提出一种基于多阶段特征融合的目标检测方法MF2M(Multi-stage Feature Fusion Method).该方法在一阶段对特征图通道进行组合拆分,再采用卷积拼接的融合方式聚合通道维度的特征,从而强化输出的目标空间轮廓信息;二阶段设计多比例的非对称卷积块,增强大横纵比目标的高维全局特征,改善目标与检测框匹配粗糙的问题,同时利用串并行相结合的处理方式减少冗余卷积参数,加速网络收敛.在DOTA(Dataset for Object deTection in Aerial images)数据集上的实验结果表明,基准方法引入MF2M后,在保证检测速度的前提下精度指标mAP提高至76.44%,结果验证了所提算法的有效性与可靠性.
文摘车辆和行人安全监测是城市交通监测的一项重要任务。针对雾霾等复杂恶劣天气条件下,监测采集的图像视觉效果差、噪声高、目标检测困难等问题,提出了一种双主干网络(MobileNets VGG-DCBM Network,MVNet)用于雾天交通目标检测,结构受PCCN和CBNet网络结构的启发,由改进的深度可分离卷积神经网络MobileNets和基于VGGNet构建的VGG-DCBM网络组成;采用并行方式构建双主干目标检测网络结构,以改进的MobileNets为主主干网络,VGG-DCBM为辅助主干网络,共同提取特征信息,实现不同网络间特征层信息的融合;MVNet网络结构采用并行方式获取两个不同网络提取的不同特征层信息,通过采用通道拼接的方法实现不同网络特征信息之间的融合,以获得更丰富的细节特征;在RTTS和HazePerson数据集上,平均精度均值(mean Average Precision,mAP)分别达到71.50%和89.84%;实验结果表明:在雾霾等复杂恶劣天气条件下具有较强的鲁棒性且能够准确的检测到车辆和行人,在目标检测性能上优于对比方法。