期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
基于密集连接注意力块的双生成器图像修复算法
1
作者 胡海燕 李硕 刘斌 《微型电脑应用》 2024年第2期1-5,共5页
针对图像修复痕迹明显、模型训练不稳定等问题,设计一种结合密集连接注意力块的图像修复算法。在生成器中引入精修复和粗修复二阶段修复网络,并在精修复网络中使用4个通道注意力块设计的密集连接注意力块;同时,增设VGG16特征提取模型,引... 针对图像修复痕迹明显、模型训练不稳定等问题,设计一种结合密集连接注意力块的图像修复算法。在生成器中引入精修复和粗修复二阶段修复网络,并在精修复网络中使用4个通道注意力块设计的密集连接注意力块;同时,增设VGG16特征提取模型,引入WGAN-GP作为判别器损失函数,以多损失融合的方式提高图像的修复效果。在CelebA数据集上验证模型的修复效果,该算法在主客观指标上均优于DCGAN、CE和DD这3种主流算法。 展开更多
关键词 图像修复 生成对抗网络 通道注意力块 密集连接网络 VGG16
下载PDF
基于注意力机制的改进双判别器图像修复算法 被引量:2
2
作者 李硕 刘斌 +1 位作者 刘昱萌 张娟娟 《陕西科技大学学报》 北大核心 2022年第2期171-177,194,共8页
为解决基于生成式对抗网络的图像修复模型存在的修复结果效果差和内容、细节等特征信息还原不准确这一问题,提出一种融合通道、像素注意力机制的多损失生成对抗网络算法.首先,该算法利用通道注意力块获取高关联的通道特征图;然后,通过... 为解决基于生成式对抗网络的图像修复模型存在的修复结果效果差和内容、细节等特征信息还原不准确这一问题,提出一种融合通道、像素注意力机制的多损失生成对抗网络算法.首先,该算法利用通道注意力块获取高关联的通道特征图;然后,通过像素注意力块对高关联通道特征图上所有像素进行打分,从而获取与缺损区域关联性更高的图像未缺损区域信息;最后,通过引入Vgg16特征提取模型向生成器的优化函数中引入内容、风格损失项,以多损失融合的方式提高图像的修复效果.在目前广泛使用的CelebA数据集和SVHN数据集上验证模型的修复效果,本算法在主客观指标上均优于DCGAN算法、CE算法和DD算法. 展开更多
关键词 通道注意力块 像素注意力 Vgg16特征提取模型 多损失融合 生成对抗网络
下载PDF
Attention Mechanism-Based Method for Intrusion Target Recognition in Railway
3
作者 SHI Jiang BAI Dingyuan +2 位作者 GUO Baoqing WANG Yao RUAN Tao 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2024年第4期541-554,共14页
The detection of foreign object intrusion is crucial for ensuring the safety of railway operations.To address challenges such as low efficiency,suboptimal detection accuracy,and slow detection speed inherent in conven... The detection of foreign object intrusion is crucial for ensuring the safety of railway operations.To address challenges such as low efficiency,suboptimal detection accuracy,and slow detection speed inherent in conventional comprehensive video monitoring systems for railways,a railway foreign object intrusion recognition and detection system is conceived and implemented using edge computing and deep learning technologies.In a bid to raise detection accuracy,the convolutional block attention module(CBAM),including spatial and channel attention modules,is seamlessly integrated into the YOLOv5 model,giving rise to the CBAM-YOLOv5 model.Furthermore,the distance intersection-over-union_non-maximum suppression(DIo U_NMS)algorithm is employed in lieu of the weighted nonmaximum suppression algorithm,resulting in improved detection performance for intrusive targets.To accelerate detection speed,the model undergoes pruning based on the batch normalization(BN)layer,and Tensor RT inference acceleration techniques are employed,culminating in the successful deployment of the algorithm on edge devices.The CBAM-YOLOv5 model exhibits a notable 2.1%enhancement in detection accuracy when evaluated on a selfconstructed railway dataset,achieving 95.0%for mean average precision(m AP).Furthermore,the inference speed on edge devices attains a commendable 15 frame/s. 展开更多
关键词 foreign object detection railway protection edge computing spatial attention module channel attention module
下载PDF
矿井图像超分辨率重建研究
4
作者 王媛彬 刘佳 +1 位作者 郭亚茹 吴冰超 《工矿自动化》 CSCD 北大核心 2023年第11期76-83,120,共9页
受井下粉尘大、照度低等环境影响,矿井图像存在分辨率低、细节模糊等问题,现有的图像超分辨率重建算法应用于矿井图像时,难以获取不同尺度图像信息、网络参数过大而影响重建速度,且重建图像易出现细节丢失、边缘轮廓模糊、伪影等问题。... 受井下粉尘大、照度低等环境影响,矿井图像存在分辨率低、细节模糊等问题,现有的图像超分辨率重建算法应用于矿井图像时,难以获取不同尺度图像信息、网络参数过大而影响重建速度,且重建图像易出现细节丢失、边缘轮廓模糊、伪影等问题。提出了一种基于多尺度密集通道注意力超分辨率生成对抗网络(SRGAN)的矿井图像超分辨率重建算法。设计了多尺度密集通道注意力残差块替代SRGAN原有的残差块,采用2路并行且卷积核大小不同的密集连接块,可充分获取图像特征;融入高效通道注意力模块,加强对高频信息的关注度;采用深度可分离卷积对网络进行轻量化,抑制网络参数的增加;利用纹理损失约束网络训练,避免网络加深时产生伪影。在井下数据集和公共数据集上对提出的矿井图像超分辨率重建算法和经典超分辨率重建算法BICUBIC,SRCNN,SRRESNET,SRGAN进行实验,结果表明:所提算法在主客观评价上总体优于对比算法,网络参数较SRGAN减少了2.54%,峰值信噪比与结构相似度较经典算法指标均值分别提高了0.764 dB和0.05358,能更好地关注图像的纹理、轮廓等细节信息,重建图像更符合人眼视觉。 展开更多
关键词 矿井图像 超分辨率重建 超分辨率生成对抗网络 多尺度密集通道注意力残差 高效通道注意力 深度可分离卷积 纹理损失
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部