期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
面向时空交通栅格流量预测的3D通道注意力网络
1
作者 童凯南 林友芳 +2 位作者 刘军 郭晟楠 万怀宇 《国防科技大学学报》 EI CAS CSCD 北大核心 2022年第3期41-49,共9页
城市交通流量预测对交通管理和公共安全具有重要意义。然而,交通栅格流量数据中的规律在时刻变化,在城市中存在全局范围的时空间关系,并且不同特征通道在每个城市区域上有不同的重要性。为解决这些挑战并做出更准确的预测,设计了一种新... 城市交通流量预测对交通管理和公共安全具有重要意义。然而,交通栅格流量数据中的规律在时刻变化,在城市中存在全局范围的时空间关系,并且不同特征通道在每个城市区域上有不同的重要性。为解决这些挑战并做出更准确的预测,设计了一种新颖的时空神经网络模型--3D通道注意力网络(three-dimensional channel-wise attention networks,3D-CANet)。提出一个3D通道内注意力(three-dimensional inner channel attention,3D-InnerCA)单元来动态捕获各个通道中不同的全局时空相关性,同时设计通道间注意力(inter channel attention,InterCA)单元来自适应地重校准每个区域上不同特征通道的贡献。在3个真实交通栅格流量数据集上的实验结果表明,3D-CANet模型的预测能力优于其他对比方法,证明了模型的有效性。 展开更多
关键词 时空数据 交通栅格流量 3D通道注意力 通道注意力 通道间注意力
下载PDF
Attention Mechanism-Based Method for Intrusion Target Recognition in Railway
2
作者 SHI Jiang BAI Dingyuan +2 位作者 GUO Baoqing WANG Yao RUAN Tao 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2024年第4期541-554,共14页
The detection of foreign object intrusion is crucial for ensuring the safety of railway operations.To address challenges such as low efficiency,suboptimal detection accuracy,and slow detection speed inherent in conven... The detection of foreign object intrusion is crucial for ensuring the safety of railway operations.To address challenges such as low efficiency,suboptimal detection accuracy,and slow detection speed inherent in conventional comprehensive video monitoring systems for railways,a railway foreign object intrusion recognition and detection system is conceived and implemented using edge computing and deep learning technologies.In a bid to raise detection accuracy,the convolutional block attention module(CBAM),including spatial and channel attention modules,is seamlessly integrated into the YOLOv5 model,giving rise to the CBAM-YOLOv5 model.Furthermore,the distance intersection-over-union_non-maximum suppression(DIo U_NMS)algorithm is employed in lieu of the weighted nonmaximum suppression algorithm,resulting in improved detection performance for intrusive targets.To accelerate detection speed,the model undergoes pruning based on the batch normalization(BN)layer,and Tensor RT inference acceleration techniques are employed,culminating in the successful deployment of the algorithm on edge devices.The CBAM-YOLOv5 model exhibits a notable 2.1%enhancement in detection accuracy when evaluated on a selfconstructed railway dataset,achieving 95.0%for mean average precision(m AP).Furthermore,the inference speed on edge devices attains a commendable 15 frame/s. 展开更多
关键词 foreign object detection railway protection edge computing spatial attention module channel attention module
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部