期刊文献+
共找到35篇文章
< 1 2 >
每页显示 20 50 100
基于端口注意力与通道空间注意力的网络异常流量检测 被引量:2
1
作者 肖斌 甘昀 +2 位作者 汪敏 张兴鹏 王照星 《计算机应用》 CSCD 北大核心 2024年第4期1027-1034,共8页
网络异常流量检测是网络安全保护重要组成部分之一。目前,基于深度学习的异常流量检测方法都是将端口号属性与其他流量属性同等对待,忽略了端口号的重要性。为了提高异常流量检测性能,借鉴注意力思想,提出一个卷积神经网络(CNN)结合端... 网络异常流量检测是网络安全保护重要组成部分之一。目前,基于深度学习的异常流量检测方法都是将端口号属性与其他流量属性同等对待,忽略了端口号的重要性。为了提高异常流量检测性能,借鉴注意力思想,提出一个卷积神经网络(CNN)结合端口注意力模块(PAM)和通道空间注意力模块(CBAM)的网络异常流量检测模型。首先,将原始网络流量作为PAM的输入,分离得到端口号属性送入全连接层,得到学习后的端口注意力权重值,并与其他流量属性点乘,输出端口注意力后的流量数据;其次,将流量数据转换成灰度图,利用CNN和CBAM更充分地提取特征图在通道和空间上的信息;最后,使用焦点损失函数解决数据不平衡的问题。所提PAM具有参数量少、即插即用和普遍适用的优点。在CICIDS2017数据集上,所提模型的异常流量检测二分类任务准确率为99.18%,多分类任务准确率为99.07%,对只有少数训练样本的类别也有较高的识别率。 展开更多
关键词 异常流量检测 注意力机制 数据不平衡 轻量级网络 通道空间注意力模块
下载PDF
一种新的基于通道-空间融合注意力及SwinT的细粒度图像分类算法
2
作者 姜昊 凌萍 陈寸生保 《南京师范大学学报(工程技术版)》 CAS 2023年第3期36-42,共7页
细粒度图像分类是计算机视觉领域的一大分类任务,其难点在于如何通过类别监督信息自主地找到判别性区域.提出一种新的通道-空间融合注意力模块,基于该模块设计了一种新的Swin Transformer算法SwinT⁃NCSA(a Swin Transformer based on a ... 细粒度图像分类是计算机视觉领域的一大分类任务,其难点在于如何通过类别监督信息自主地找到判别性区域.提出一种新的通道-空间融合注意力模块,基于该模块设计了一种新的Swin Transformer算法SwinT⁃NCSA(a Swin Transformer based on a novel channel⁃spatial attention module),分别从通道维和空间维同时提取特征,再将其融入到Swin Transformer模型中以提高其小尺度中多头注意力信息的提取能力.SwinT⁃NCSA算法特别关注了对分类有用的区域,同时忽视对分类无用的背景区域,以此在细粒度图像分类任务中达到较高的分类准确率.在FGVC Aircraft飞机数据集、CUB-200-2011鸟类数据集和Stanford Cars车类数据集3个公共数据集上的实验表明,SwinT⁃NCSA算法可以分别取得93.3%、88.4%和94.7%的准确率,优于同类算法. 展开更多
关键词 细粒度图像分类 Swin TRANSFORMER 通道-空间融合注意力模块 深度学习 弱监督学习
下载PDF
基于空间通道注意力机制与多尺度融合的交通标志识别研究 被引量:8
3
作者 黄志强 李军 《南京邮电大学学报(自然科学版)》 北大核心 2022年第2期93-102,共10页
通过YOLOV3深度神经网络算法可以实现道路交通标志的自动检测与识别,由于YOLOV3运算量较大,很难在小型嵌入式平台上使用,针对这一问题,文中提出了改进型的轻量化YOLOV3-3ctiny神经网络模型。为了融合浅层特征图的空间信息与深层特征图... 通过YOLOV3深度神经网络算法可以实现道路交通标志的自动检测与识别,由于YOLOV3运算量较大,很难在小型嵌入式平台上使用,针对这一问题,文中提出了改进型的轻量化YOLOV3-3ctiny神经网络模型。为了融合浅层特征图的空间信息与深层特征图的语义信息,将第19层卷积层通过上采样后与第7层卷积层相连接,多尺度融合后输入YOLO层形成新的特征金字塔,以此提高小目标的识别率。同时,为使网络更加关注交通标志的细节信息,在特征金字塔网络中增添能够增强前景信息降低背景信息的空间通道注意力机制。使用Kmeans聚类算法对数据集作聚类处理,获得一组先验框。在长沙理工大学交通标志数据集上进行测试,实验结果表明,改进后算法的识别率达到91.8%,与YOLOV3-tiny算法相比提高了24.9个百分点,而与YOLOV3算法相比,每张图片的检测时间降低至0.133s,降低了49.6%,该算法具有较强的实时性和准确性。 展开更多
关键词 交通标志 轻量化网络 YOLOV3-3ctiny 多尺度融合 特征金字塔 空间通道注意力机制
下载PDF
融入双注意力模块的U-Net肺结节图像分割方法 被引量:2
4
作者 侯英竹 《计算机科学与应用》 2022年第7期1756-1764,共9页
对肺部医学图像进行分析可以用来肺癌诊断,为了解决肺结节分割的任务中特征提取复杂和分割困难等问题,本文提出了一种融入双注意力模块的U-Net肺结节图像分割方法。该方法在U-Net网络的基础上融入空间注意力模块和通道注意力模块,改善... 对肺部医学图像进行分析可以用来肺癌诊断,为了解决肺结节分割的任务中特征提取复杂和分割困难等问题,本文提出了一种融入双注意力模块的U-Net肺结节图像分割方法。该方法在U-Net网络的基础上融入空间注意力模块和通道注意力模块,改善分割网络对复杂环境的感知能力,克服复杂环境对分割结果的干扰从而提高分割效果。在肺结节公开数据集(LUNA16)上进行实验结果表明,本文提出的分割方法能够准确地分割出肺结节区域,能够较为有效地实现肺结节图像分割。 展开更多
关键词 肺结节 图像分割 U-Net 空间注意力模块 通道注意力模块
下载PDF
基于注意力机制和小波变换的图像隐写方法
5
作者 李佩佩 陈燕 +1 位作者 王康谊 张权 《中北大学学报(自然科学版)》 CAS 2024年第6期737-743,共7页
为了更好地平衡隐写容量和不可感知性之间的关系,本文提出了一种基于SteganoGAN的优化方案。首先,将SteganoGAN隐写网络和提取网络进行加深,以增强模型的复杂度和学习能力;其次,为了实现更为隐蔽的信息嵌入,在隐写网络部分引入离散小波... 为了更好地平衡隐写容量和不可感知性之间的关系,本文提出了一种基于SteganoGAN的优化方案。首先,将SteganoGAN隐写网络和提取网络进行加深,以增强模型的复杂度和学习能力;其次,为了实现更为隐蔽的信息嵌入,在隐写网络部分引入离散小波变换(Discrete Wavelet Transformation,DWT)和逆离散小波变换(Inverse Discrete Wavelet Transform,IDWT)模块,这使得秘密信息能够被有效地嵌入到图像的小波域中;最后,在隐写网络、提取网络中融入了一种改进的通道-空间注意力模块(Improved Channel and Spatial Attention Module,ICAM-SAM),促使模型能够聚焦于图像中的高隐蔽性区域,实现更为精准的信息隐藏。实验结果表明:改进后的模型在提取准确率上提高了0.84百分点,表明其隐写和提取过程更加精确。此外,每像素嵌入率(Reed-Solomon Bits-Per-Pixel,RS-BPP)提高了1.71%,这表明改进后的模型在相同大小的图像中可以隐藏更多的信息。同时,峰值信噪比(Peak Signal to Noise Ratio,PSNR)提高了12.53%、结构相似性(Structural Similarity Index,SSIM)提高了5.14%,这表明嵌入的信息对原始图像的影响更小,改进后的模型具有更高的图像质量。综合结果表明,改进后的模型具有更好的不可感知性和较大的隐写容量。 展开更多
关键词 图像隐写 生成对抗网络 离散小波变换 逆离散小波变换 改进的通道-空间注意力模块
下载PDF
基于双注意力编码-解码器架构的视网膜血管分割 被引量:3
6
作者 李天培 陈黎 《计算机科学》 CSCD 北大核心 2020年第5期166-171,共6页
眼底视网膜血管的分割提取对于糖尿病、视网膜病、青光眼等眼科疾病的诊断具有重要的意义。针对视网膜血管图像中的血管难以提取、数据量较少等问题,文中提出了一种结合注意力模块和编码-解码器结构的视网膜血管分割方法。首先对编码-... 眼底视网膜血管的分割提取对于糖尿病、视网膜病、青光眼等眼科疾病的诊断具有重要的意义。针对视网膜血管图像中的血管难以提取、数据量较少等问题,文中提出了一种结合注意力模块和编码-解码器结构的视网膜血管分割方法。首先对编码-解码器卷积神经网络的每个卷积层添加空间和通道注意力模块,加强模型对图像特征的空间信息和通道信息(如血管的大小、形态和连通性等特点)的利用,从而改善视网膜血管的分割效果。其中,空间注意力模块关注于血管的拓扑结构特性,而通道注意力模块关注于血管像素点的正确分类。此外,在训练过程中采用Dice损失函数解决了视网膜血管图像正负样本不均衡的问题。在3个公开的眼底图像数据库DRIVE,STARE和CHASE_DB1上进行了实验,实验数据表明,所提算法的准确率、灵敏度、特异性和AUC值均优于已有的视网膜血管分割方法,其AUC值分别为0.9889,0.9812和0.9831。实验证明,所提算法能够有效提取健康视网膜图像和病变视网膜图像中的血管网络,能够较好地分割细小血管。 展开更多
关键词 视网膜血管分割 通道注意力 空间注意力 编码-解码器结构 特征可视化
下载PDF
基于半监督空间-通道选择性卷积核网络的极化SAR图像地物分类 被引量:3
7
作者 王睿川 王岩飞 《雷达学报(中英文)》 CSCD 北大核心 2021年第4期516-530,共15页
针对极化合成孔径雷达(极化SAR)图像地物分类中标注样本数量少的问题,该文提出一种基于空间-通道选择性卷积核全卷积网络(SCSKFCN)和预选-联合优化半监督学习(SPUO)的极化SAR图像地物分类方法。SCSKFCN通过使用空间和通道注意力机制,对... 针对极化合成孔径雷达(极化SAR)图像地物分类中标注样本数量少的问题,该文提出一种基于空间-通道选择性卷积核全卷积网络(SCSKFCN)和预选-联合优化半监督学习(SPUO)的极化SAR图像地物分类方法。SCSKFCN通过使用空间和通道注意力机制,对不同感受野的特征进行自适应加权融合,有效提升了模型的分类性能。SPUO能够高效地利用标注样本,挖掘无标注样本中蕴含的信息。它采用K-Wishart距离进行样本预选并生成伪标签,然后在联合优化阶段使用真实标注样本和伪标注样本同时对模型进行优化。在模型优化过程中,SPUO对伪标注样本进行两步验证并筛选可靠的伪标注样本参与优化。实验结果表明,该方法能够在只使用少量标注样本的条件下实现高精度、高效率的极化SAR图像地物分类。 展开更多
关键词 极化SAR图像地物分类 全卷积网络 注意力机制 半监督学习 空间-通道选择性卷积核网络
下载PDF
引入注意力机制的自监督光流计算 被引量:2
8
作者 安峰 戴军 +1 位作者 韩振 严仲兴 《图学学报》 CSCD 北大核心 2022年第5期841-848,共8页
光流计算是诸多计算机视觉系统的关键模块,广泛应用于动作识别、机器人定位与导航等领域。但目前端到端的光流计算仍受限于数据源的缺少,尤其是真实场景下的光流数据难以获取。人工合成的光流数据占绝大多数,且合成数据不能完全反应真... 光流计算是诸多计算机视觉系统的关键模块,广泛应用于动作识别、机器人定位与导航等领域。但目前端到端的光流计算仍受限于数据源的缺少,尤其是真实场景下的光流数据难以获取。人工合成的光流数据占绝大多数,且合成数据不能完全反应真实场景(如树叶晃动、行人倒影等),难以避免过拟合等情况。无监督或自监督方法可以利用海量的视频数据进行训练,摆脱了对数据集的依赖,是解决数据集缺少的有效途径。基于此搭建了一个自监督学习光流计算网络,其中的“Teacher”模块和“Student”模块集成了最新光流计算网络:稀疏相关体网络(SCV),减少了计算冗余量;同时引入注意力模型作为网络的一个节点,以提高图像特征在通道和空间上的维度属性。将SCV与注意力机制集成在自监督学习光流计算网络之中,在KITTI 2015数据集上的测试结果达到或超过了常见的有监督训练网络。 展开更多
关键词 光流计算 自监督学习 卷积注意力模块 空间/通道注意力 稀疏相关体
下载PDF
混合扩张卷积和注意力机制的路面裂缝检测 被引量:1
9
作者 瞿中 李明 《计算机工程与设计》 北大核心 2023年第8期2425-2431,共7页
针对复杂背景下路面裂缝检测困难的问题,提出一种基于混合扩张卷积和空间-通道注意力机制的路面裂缝检测算法。基于改进的U-Net网络,在编码阶段,使用空间-通道注意力机制增强裂缝特征,抑制非裂缝特征;在网络中间部分,使用混合扩张卷积... 针对复杂背景下路面裂缝检测困难的问题,提出一种基于混合扩张卷积和空间-通道注意力机制的路面裂缝检测算法。基于改进的U-Net网络,在编码阶段,使用空间-通道注意力机制增强裂缝特征,抑制非裂缝特征;在网络中间部分,使用混合扩张卷积实现在不增加额外模块的前提下增大网络的感受野;在解码阶段,融合多层次和多尺度特征使最终预测结果更接近路面真实情况。实验结果表明,所提算法能够快速准确地对路面裂缝进行检测,具有较强的鲁棒性。 展开更多
关键词 裂缝检测 深度学习 卷积神经网络 编码-解码结构 混合扩张卷积 空间-通道注意力机制 多尺度特征融合
下载PDF
基于注意力机制的街景图像语义分割方法
10
作者 瑚琦 王兵 卞亚林 《软件导刊》 2022年第9期141-145,共5页
街道场景图像的准确分割对于自动驾驶系统具有重要辅助作用,而针对该场景的现有语义分割方法仍存在分割精度不高、参数量大等问题。为有效改善语义分割性能,通过构建空间注意力模块和通道注意力模块,提出一种注意力语义分割网络。该网... 街道场景图像的准确分割对于自动驾驶系统具有重要辅助作用,而针对该场景的现有语义分割方法仍存在分割精度不高、参数量大等问题。为有效改善语义分割性能,通过构建空间注意力模块和通道注意力模块,提出一种注意力语义分割网络。该网络首先采用残差网络提取特征,然后并行使用两种注意力模块分别从空间和通道维度自适应细化特征图,以使网络在训练学习过程中更加关注信息丰富的空间区域和通道,进而增强网络表示能力。所提注意力模块具有结构简单和轻量级的特点,能与网络一起进行端到端训练。在Cityscapes和CamVid数据集上的实验结果表明,该注意力语义分割网络在较少的参数条件下,可获得较好的分割效果。 展开更多
关键词 街景图像 语义分割 残差网络 空间注意力模块 通道注意力模块
下载PDF
注意力残差网络的单图像去雨方法研究 被引量:7
11
作者 徐爱生 唐丽娟 陈冠楠 《小型微型计算机系统》 CSCD 北大核心 2020年第6期1281-1285,共5页
恶劣的雨天天气会严重影响图像质量,进而导致目标检测,目标追踪等算法性能急剧下降,因此图像去雨得到了快速发展.本文提出一种基于注意力残差网络的端到端图像去雨算法,通过卷积神经网络强大的表示能力,学习出从有雨到无雨图像的映射.... 恶劣的雨天天气会严重影响图像质量,进而导致目标检测,目标追踪等算法性能急剧下降,因此图像去雨得到了快速发展.本文提出一种基于注意力残差网络的端到端图像去雨算法,通过卷积神经网络强大的表示能力,学习出从有雨到无雨图像的映射.将注意力模块引入残差模块中,首先利用通道注意力机制自适应学习通道维度上不同特征,然后利用空间注意力机制建立雨条纹的内在关系,之后将注意力模块与残差模块相结合得到注意力残差单元,最后将其堆叠成高性能去雨网络.公开的合成和真实世界图像数据集上的实验表明,本文所提出的方法在视觉上可以大大提高去雨的性能. 展开更多
关键词 单图像去雨 深度残差网络 注意力机制 通道注意力模块 空间注意力模块
下载PDF
基于注意力和多级特征融合的铁路场景小尺度行人检测算法 被引量:6
12
作者 石瑞姣 陈后金 +3 位作者 李居朋 李艳凤 李丰 万成凯 《铁道学报》 EI CAS CSCD 北大核心 2022年第5期76-83,共8页
行人入侵是影响铁路行车安全的重要因素。为有效解决短焦距摄像机在大视场中小尺度行人检测精度低的问题,提出一种注意力机制引导下的多级特征融合网络模型。首先,将YOLOv3作为主干网络,针对多次降采样后行人特征丢失的问题,设计四倍降... 行人入侵是影响铁路行车安全的重要因素。为有效解决短焦距摄像机在大视场中小尺度行人检测精度低的问题,提出一种注意力机制引导下的多级特征融合网络模型。首先,将YOLOv3作为主干网络,针对多次降采样后行人特征丢失的问题,设计四倍降采样分支以利用高分辨率特征有效提取小尺度行人信息。其次,特征融合阶段引入通道-空间注意力机制以抑制低层特征中背景噪声干扰。最后,引入CIoU损失函数用于行人目标框的回归,解决均方误差损失函数存在的优化不一致及尺度敏感问题。实验结果表明,相较于经典YOLOv3以及现阶段主流目标检测算法,本算法具有更高的检测精度,在自建铁路私有数据集和Caltech公开数据集的各子集上对数平均漏检率均有明显降低。 展开更多
关键词 铁路行车安全 小尺度行人检测 多级特征融合 通道-空间注意力 CIoU损失函数
下载PDF
基于CSLS-CycleGAN的侧扫声纳水下目标图像样本扩增法 被引量:1
13
作者 汤寓麟 王黎明 +3 位作者 余德荧 李厚朴 刘敏 张卫东 《系统工程与电子技术》 EI CSCD 北大核心 2024年第5期1514-1524,共11页
针对侧扫声纳水下目标图像稀缺,获取难度大、成本高,导致基于深度学习的目标检测模型性能差的问题,结合光学域类目标数据集丰富的现状,提出一种基于通道和空间注意力(channel and spatial attention,CSA)模块、最小二乘生成对抗生成网络... 针对侧扫声纳水下目标图像稀缺,获取难度大、成本高,导致基于深度学习的目标检测模型性能差的问题,结合光学域类目标数据集丰富的现状,提出一种基于通道和空间注意力(channel and spatial attention,CSA)模块、最小二乘生成对抗生成网络(least squares generative adversarial networks,LSGAN)及循环对抗生成网络(cycle generative adversarial networks,CycleGAN)的侧扫声纳水下目标图像样本扩增方法。首先,受CycleGAN的启发,设计基于循环一致性的单循环网络结构,保证模型的训练效率。然后,在生成器中融合CSA模块,减少信息弥散的同时增强跨纬度交互。最后,设计了基于LSGAN的损失函数,提高生成图像质量的同时提高训练稳定性。在船舶光学域数据集与侧扫声纳沉船数据集上进行实验,所提方法实现了光学-侧扫声纳样本间信息的高效、稳健转换以及大量侧扫声纳目标样本的扩增。同时,基于本文生成样本训练后的检测模型进行了水下目标检测,结果表明,使用本文样本扩增数据训练后的模型在少样本沉船目标检测的平均准确率达到了84.71%,证明了所提方法实现了零样本和小样本水下强代表性目标样本的高质量扩增,并为高性能水下目标检测模型构建提供了一种新的途径。 展开更多
关键词 样本扩增 侧扫声纳 循环生成对抗网络 通道空间注意力模块 最小二乘生成对抗网络
下载PDF
基于空间-通道注意力的改进SSD目标检测算法 被引量:14
14
作者 许光宇 尹孟园 《光电子.激光》 CAS CSCD 北大核心 2021年第9期970-978,共9页
目标检测的任务是精确识别,有效定位出图像中目标物体,且预定义其类别。针对主流目标检测(single shot multibox detector,SSD)算法存在小目标检测准确度不高,检测效率较低等问题,提出一种基于空间-通道注意力机制的SSD目标检测算法(spa... 目标检测的任务是精确识别,有效定位出图像中目标物体,且预定义其类别。针对主流目标检测(single shot multibox detector,SSD)算法存在小目标检测准确度不高,检测效率较低等问题,提出一种基于空间-通道注意力机制的SSD目标检测算法(spatial and channel single shot multibox detector,SC_SSD)。通过在SSD深层网络引入空间-通道注意力机制增强高层特征图语义信息,提高算法获取目标物体的细节与位置信息的能力,从而降低漏检率及误检率,并提高小目标物体检测的准确度。此外,利用MobileNetV2中的深度可分离卷积对SSD主干网络(visual geometry group network,VGG-16)进行剪枝处理,降低参数量,从而减少训练与检测的时间。在PASCAL VOC2007数据集上进行实验,本文算法检测的精确度与速度分别为78.9%与59.4 Fps,比SSD算法提升了3.2%与26.7 Fps,满足实时性需求。算法也优于相比较的其他算法,是一种有效可行的目标检测算法。 展开更多
关键词 目标检测 single shot multibox detector(SSD)算法 空间-通道注意力机制 小目标
原文传递
钢轨表面缺陷检测Mask R-CNN算法研究与优化 被引量:1
15
作者 孟瑞锋 梁桢 +2 位作者 贾超 乔志 赵晨 《都市快轨交通》 北大核心 2024年第5期68-77,共10页
为有效防止城市轨道交通事故发生,更好地保障运行安全,钢轨表面缺陷检测技术在巡检工作中发挥着重要作用。针对现有钢轨缺陷检测技术中检测精度差、小目标敏感度低等问题,在Mask R-CNN(mask region-based convolutional neural network... 为有效防止城市轨道交通事故发生,更好地保障运行安全,钢轨表面缺陷检测技术在巡检工作中发挥着重要作用。针对现有钢轨缺陷检测技术中检测精度差、小目标敏感度低等问题,在Mask R-CNN(mask region-based convolutional neural network)算法模型基础上,提出一种融合注意力机制的模型改进方案。该方案在特征提取网络中引入通道-空间复合注意力机制(channel-wise spatial module,CSM)用于实例分割缺陷检测,有效剔除干扰信息,获得多尺度特征表达,得到更多空间信息以及更优的浅层信息,从而提升对钢轨表面缺陷边缘检测能力。在相同的实验环境下,相对于Mask R-CNN算法,加入CSM后,Mask R-CNN模型的平均精度均值(mean average precision,mAP)提高了6.5%。其中,对钢轨“凹陷”“裂纹”以及“疲劳磨损”缺陷识别的平均精度(average precision,AP)分别提高了6.3%、6.9%和6.1%。横向对比发现,加入CSM后的Mask R-CNN模型,相较于Fast R-CNN模型,三种缺陷的分割效果分别提升了11.6%、12.5%和12.9%。同时,相较于Faster R-CNN模型,三种缺陷的分割效果分别提升了8.8%、10.0%和10.3%。加入CSM后的Mask R-CNN模型可以更好地识别三类缺陷,提升检测精度和小目标敏感度,为轨道智能巡检提供更安全有力的技术支持和保障。 展开更多
关键词 城市轨道交通 通道-空间注意力机制 钢轨缺陷 实例分割 Mask R-CNN算法
下载PDF
Attention Mechanism-Based Method for Intrusion Target Recognition in Railway
16
作者 SHI Jiang BAI Dingyuan +2 位作者 GUO Baoqing WANG Yao RUAN Tao 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2024年第4期541-554,共14页
The detection of foreign object intrusion is crucial for ensuring the safety of railway operations.To address challenges such as low efficiency,suboptimal detection accuracy,and slow detection speed inherent in conven... The detection of foreign object intrusion is crucial for ensuring the safety of railway operations.To address challenges such as low efficiency,suboptimal detection accuracy,and slow detection speed inherent in conventional comprehensive video monitoring systems for railways,a railway foreign object intrusion recognition and detection system is conceived and implemented using edge computing and deep learning technologies.In a bid to raise detection accuracy,the convolutional block attention module(CBAM),including spatial and channel attention modules,is seamlessly integrated into the YOLOv5 model,giving rise to the CBAM-YOLOv5 model.Furthermore,the distance intersection-over-union_non-maximum suppression(DIo U_NMS)algorithm is employed in lieu of the weighted nonmaximum suppression algorithm,resulting in improved detection performance for intrusive targets.To accelerate detection speed,the model undergoes pruning based on the batch normalization(BN)layer,and Tensor RT inference acceleration techniques are employed,culminating in the successful deployment of the algorithm on edge devices.The CBAM-YOLOv5 model exhibits a notable 2.1%enhancement in detection accuracy when evaluated on a selfconstructed railway dataset,achieving 95.0%for mean average precision(m AP).Furthermore,the inference speed on edge devices attains a commendable 15 frame/s. 展开更多
关键词 foreign object detection railway protection edge computing spatial attention module channel attention module
下载PDF
基于机器视觉的金属零件表面缺陷检测研究
17
作者 孙姿姣 罗芳 李阳辉 《清远职业技术学院学报》 2025年第1期42-48,共7页
目前制造业中,金属零件的缺陷问题会导致重大经济损失,主要问题在于零件缺陷小且缺陷位置出现随机,传统人工检测难以区分微小缺陷位置与非缺陷位置,且人力成本高,经济效益低下。针对这一问题,研究提出一种基于机器视觉的金属零件表面缺... 目前制造业中,金属零件的缺陷问题会导致重大经济损失,主要问题在于零件缺陷小且缺陷位置出现随机,传统人工检测难以区分微小缺陷位置与非缺陷位置,且人力成本高,经济效益低下。针对这一问题,研究提出一种基于机器视觉的金属零件表面缺陷检测方法,通过机器视觉检测代替人力劳动,同时采用交互式空间位置注意力模块,解决了金属零件表面的缺陷不明显难以检测的问题,采用对偶局部-全局Transformer模块,解决了缺陷区域与周围正常区域难以区分的问题,提高了金属零件表面微小缺陷的检测性能,从而提高企业经济效益。 展开更多
关键词 机器视觉 缺陷检测 交互式空间位置注意力模块 对偶局部-全局Transformer模块
下载PDF
增强语义分割的网络模型PS-UNet 被引量:1
18
作者 范憧憧 齐苏敏 +2 位作者 孟静 李志琦 王妍 《曲阜师范大学学报(自然科学版)》 CAS 2023年第1期56-63,共8页
文章提出了一种提升上下文依赖关系的增强语义分割网络模型PS-UNet实现医学图像分割.PS-UNet将残差块、PCA模块和SPP模块融合到U-Net网络模型中,可获取更多的特征信息,从而提升分割效果.该模型既可以对器官轮廓粗分割又可以对视网膜血... 文章提出了一种提升上下文依赖关系的增强语义分割网络模型PS-UNet实现医学图像分割.PS-UNet将残差块、PCA模块和SPP模块融合到U-Net网络模型中,可获取更多的特征信息,从而提升分割效果.该模型既可以对器官轮廓粗分割又可以对视网膜血管和细胞精细分割.在公开的数据集上分别对肺部、视网膜血管和细胞分割进行了测试.实验结果表明,与当前先进网络模型相比,PS-UNet在所有实验中,性能均有所提升,其中肺部分割中准确率和灵敏度相对于U-Net网络模型分别提高了2.03%和2.24%,Dice相似系数达到了97.16%. 展开更多
关键词 医学图像分割 U-Net 位置通道注意力模块 空间金字塔池化模块 增强语义分割
下载PDF
MRAU-net网络下的X光胸片肺野分割算法
19
作者 胡俊 李平 《华侨大学学报(自然科学版)》 CAS 2023年第3期398-406,共9页
为了解决U-net网络进行X光胸片肺野分割时,受限于特征提取能力不足导致分割结果不精确的问题,提出一种多尺度残差注意力U型网络(MRAU-net)模型.利用多尺度信息融合(MIF)模块,改善网络结构,增加对多尺度信息的获取;利用通道和空间双注意... 为了解决U-net网络进行X光胸片肺野分割时,受限于特征提取能力不足导致分割结果不精确的问题,提出一种多尺度残差注意力U型网络(MRAU-net)模型.利用多尺度信息融合(MIF)模块,改善网络结构,增加对多尺度信息的获取;利用通道和空间双注意力(CSDA)模块,解决网络在有限算力下的信息过载问题.同时,对残差模块进行改进,并与U-net网络进行深度结合,提升网络的学习稳定性,缓解梯度消失和过拟合现象.实验结果表明:文中方法具有优秀的X光胸片肺野分割能力,能获得更精确的分割结果. 展开更多
关键词 胸片肺野分割 U-net网络 多尺度信息融合模块 通道空间注意力模块 深度残差
下载PDF
基于空间多尺度残差网络的红外与可见光图像融合
20
作者 张亦孟 林伟国 《大气与环境光学学报》 CAS CSCD 2023年第5期469-478,共10页
针对如何充分提取和融合红外与可见光图像典型特征的问题,提出一种基于空间多尺度残差网络的图像融合算法。首先,将源图像输入基于空间多尺度残差模块组成的编码器网络,通过源图像重建任务,训练编码器自动获取重要特征信息的能力;然后,... 针对如何充分提取和融合红外与可见光图像典型特征的问题,提出一种基于空间多尺度残差网络的图像融合算法。首先,将源图像输入基于空间多尺度残差模块组成的编码器网络,通过源图像重建任务,训练编码器自动获取重要特征信息的能力;然后,引入特征金字塔结构,设计了特征通道自注意力机制,编码器输出的基础层和细节层进行融合,减小尺度噪声,并由解码器重构出融合图像;最后,利用公开数据集进行定性和定量实验,证明了改进算法在突出红外图像目标和保留可见光图像纹理细节两方面的优势,相比于DDcGAN算法,新算法的标准差和平均梯度分别提升了12.91%和47.41%。 展开更多
关键词 图像融合 自动编码器 空间多尺度残差模块 通道注意力
下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部