期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
含菌-无机盐超细水雾抑制甲烷爆炸试验研究 被引量:6
1
作者 杨克 张平 +3 位作者 邢志祥 纪虹 周越 王壮 《中国安全科学学报》 CAS CSCD 北大核心 2019年第1期62-67,共6页
为进一步提高超细水雾抑制甲烷爆炸的效率,搭建抑制甲烷爆炸试验平台,开展用含甲烷氧化菌-无机盐超细水雾降解与抑爆甲烷的试验研究,考虑降解时间、第1次通雾量、第2次通雾量等3个因素进行正交试验,分析不同试验条件下甲烷爆炸压力和火... 为进一步提高超细水雾抑制甲烷爆炸的效率,搭建抑制甲烷爆炸试验平台,开展用含甲烷氧化菌-无机盐超细水雾降解与抑爆甲烷的试验研究,考虑降解时间、第1次通雾量、第2次通雾量等3个因素进行正交试验,分析不同试验条件下甲烷爆炸压力和火焰传播过程。结果表明:改性培养基中的甲烷氧化菌降解甲烷效果优于普通培养基;降解时间对甲烷最大爆炸超压ΔP_(max)有显著影响,第2次通雾量对甲烷最大爆炸超压ΔP_(max)有一定影响;降解时间对火焰平均传播速度有显著影响,第2次通雾量对火焰平均传播速度有一定影响;同时增加降解时间和第2次通雾量可以降低平均升压速率和火焰平均传播速度。 展开更多
关键词 甲烷氧化菌 甲烷 超细水雾 正交试验 火焰 降解时间 通雾量
下载PDF
Analysis of atmospheric turbulence in the upper layers of sea fog 被引量:5
2
作者 李永平 郑运霞 《Chinese Journal of Oceanology and Limnology》 SCIE CAS CSCD 2015年第3期809-818,共10页
Atmospheric turbulence plays a vital role in the formation and dissipation of fog. However,studies of such turbulence are typically limited to observations with ultrasonic anemometers less than 100 m above ground. Thu... Atmospheric turbulence plays a vital role in the formation and dissipation of fog. However,studies of such turbulence are typically limited to observations with ultrasonic anemometers less than 100 m above ground. Thus,the turbulence characteristics of upper fog layers are poorly known. In this paper,we present 4-layers of data,measured by ultrasonic anemometers on a wind tower about 400 m above the sea surface; we use these data to characterize atmospheric turbulence atop a heavy sea fog. Large differences in turbulence during the sea fog episode were recorded. Results showed that the kinetic energy,momentum flux,and sensible heat flux of turbulence increased rapidly during the onset of fog. After onset,high turbulence was observed within the uppermost fog layer. As long as this turbulence did not exceed a critical threshold,it was crucial to enhancing the cooling rate,and maintaining the fog. Vertical momentum flux and sensible heat flux generated by this turbulence weakened wind speed and decreased air temperature during the fog. Towards the end of the fog episode,the vertical distribution of sensible heat flux reversed,contributing to a downward momentum flux in all upper layers. Spatial and temporal scales of the turbulence eddy were greater before and after the fog,than during the fog episode. Turbulence energy was greatest in upper levels,around 430 m and 450 m above mean sea level(AMSL),than in lower levels of the fog(390 m and 410 m AMSL); turbulence energy peaked along the mean wind direction. Our results show that the status of turbulence was complicated within the fog; turbulence caused fluxes of momentum and sensible heat atop the fog layer,affecting the underlying fog by decreasing or increasing average wind speed,as well as promoting or demoting air temperature stratification. 展开更多
关键词 ultrasonic anemometers turbulence characteristics momentum flux sensible heat flux variation in sea fog
下载PDF
Effects of Coordinate Rotation on Turbulent Flux Measurements during Wintertime Haze Pollution in Beijing, China
3
作者 GUO Xiao-Feng 《Atmospheric and Oceanic Science Letters》 CSCD 2015年第2期67-71,共5页
Eddy-covariance observations from the Beijing 325-m meteorological tower are used to evaluate the effects of coordinate rotation on the turbulent exchange of momentum and scalars during wintertime haze pollution(Janua... Eddy-covariance observations from the Beijing 325-m meteorological tower are used to evaluate the effects of coordinate rotation on the turbulent exchange of momentum and scalars during wintertime haze pollution(January-February 2013). Two techniques are used in the present evaluation; namely, the natural wind coordinate(NWC) and the planar fit coordinate(PFC), with the latter being applied by means of two methods for linear regression(i.e., overall and sector-wise). The different techniques show a general agreement in both turbulent fluxes and transport efficiencies, especially evident at the lower, 140-m level above the ground(compared to the higher, 280-m level), perhaps implying that the selection of a technique for coordinate rotation(NWC or PFC) is less of a concern for a sufficiently low level, despite the complexities of urban terrain. Additionally, sector-wise regression is a recommended approach for practical application of the PFC in a complex urban environment subjected to particulate pollution, because this method is found to produce a better correlation between the mean vertical velocity at the 140- and 280-m heights. 展开更多
关键词 coordinate rotation eddy-covariance method particulate air pollution turbulent exchange urban environment
下载PDF
The Influence of Wave State and Sea Spray on Drag Coefficient from Low to High Wind Speeds 被引量:2
4
作者 SHI Jian ZHONG Zhong +3 位作者 LI Xunqiang JIANG Guorong ZENG Wenhua LI Yan 《Journal of Ocean University of China》 SCIE CAS 2016年第1期41-49,共9页
Ocean waves alter the roughness of sea surface,and sea spray droplets redistribute the momentum flux at the air-sea interface.Hence,both wave state and sea spray influence sea surface drag coefficient.Based on the new... Ocean waves alter the roughness of sea surface,and sea spray droplets redistribute the momentum flux at the air-sea interface.Hence,both wave state and sea spray influence sea surface drag coefficient.Based on the new sea spray generation function which depends on sea surface wave,a wave-dependent sea spray stress is obtained.According to the relationship between sea spray stress and the total wind stress on the sea surface,a new formula of drag coefficient at high wind speed is acquired.With the analysis of the new drag coefficient,it is shown that the drag coefficient reduces at high wind speed,indicating that the sea spray droplets can limit the increase of drag coefficient.However,the value of high wind speed corresponding to the initial reduced drag coefficient is not fixed,and it depends on the wave state,which means the influence of wave cannot be ignored.Comparisons between the theoretical and measured sea surface drag coefficients in field and laboratory show that under different wave ages,the theoretical result of drag coefficient could include the measured data,and it means that the new drag coefficient can be used properly from low to high wind speeds under any wave state condition. 展开更多
关键词 wave state sea spray drag coefficient
下载PDF
Derivation of a wave-state-dependent sea spray generation function and its application in estimating sea spray heat flux 被引量:1
5
作者 LIU Bin GUAN ChangLong +1 位作者 XIE LiAn ZHAO DongLiang 《Science China Earth Sciences》 SCIE EI CAS CSCD 2015年第10期1862-1871,共10页
A sea spray generation function(SSGF)for bubble-derived droplets that takes into account the impact of wave state on whitecap coverage was presented in this study.By combining the new SSGF with a previous wave-state-d... A sea spray generation function(SSGF)for bubble-derived droplets that takes into account the impact of wave state on whitecap coverage was presented in this study.By combining the new SSGF with a previous wave-state-dependent SSGF for spume droplets,an SSGF applicable to both bubble-derived and spume droplets that includes the impacts of wave state was obtained.The produced SSGF varies with surface wind as well as with wave development.As sea surface wind increases,more sea spray droplets are produced,resulting in larger SSGFs and volume fluxes.Meanwhile,under the same wind conditions,the SSGF is mediated by wave state,with larger SSGFs corresponding to older waves and larger windsea Reynolds numbers.The impact of wave state on sea spray heat flux was then estimated by applying this SSGF while considering the thermodynamic feedback process.Under given atmospheric and oceanic conditions,the estimated sea spray heat flux increases with wind speed,wave age,and windsea Reynolds number. 展开更多
关键词 wave state sea spray sea spray generation function air-sea heat flux
原文传递
Breakup Structure of Two-phase Jets with Various Momentum Flux from a Porous Injector 被引量:2
6
作者 Inchul Lee Dohun Kim Jaye Koo 《Journal of Thermal Science》 SCIE EI CAS CSCD 2014年第1期60-67,共8页
Spray structure and atomization characteristics were investigated through a comparison of a porous and a shear coaxial injector. The porous injector shows better atomization performance than the shear coaxial injector... Spray structure and atomization characteristics were investigated through a comparison of a porous and a shear coaxial injector. The porous injector shows better atomization performance than the shear coaxial injector. To in- crease atomization performance and mixing efficiency of two-phase jets, a coaxial porous injector which can be applicable to liquid rocket combustors was designed and tested. The characteristics of atomization and spray from a porous and a shear coaxial injector were characterized by the momentum flux ratio. The breakup mechanism of the porous injector is governed by Taylor-Culick flow and axial shear forces. Momentum of injected gas flow through a porous material which is composed of sintered metal is radically transferred to the center of the liquid column, and then liquid column is effectively broken up. Although the shapes of spray from porous and shear co- axial jets were similar for various momentum ratio, spray structures such as spray angle and droplet sizes were different. As increasing the momentum flux ratio, SMD from the porous injector showed smaller value than the shear coaxial injector 展开更多
关键词 Porous injector Shear coaxial injector Breakup mechanism Momentum flux ratio
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部