Diesel particulate matter (DPM) is considered to be carcinogenic after prolonged exposure. With more diesel- powered equipment used in underground mines, miners' exposure to DPM has become an increasing concern. Th...Diesel particulate matter (DPM) is considered to be carcinogenic after prolonged exposure. With more diesel- powered equipment used in underground mines, miners' exposure to DPM has become an increasing concern. This paper used computational fluid dynamics method to study the DPM dispersion in a dead-end entry with loading operation. The effects of different push-pull ventilation systems on DPM distribution were evaluated to improve the working conditions for underground miners. The four push-pull systems considered include: long push and short pull tubing; short push and long pull tubing, long push and curved pull tubing, and short push and curved pull tubing. A species transport model with buoyancy effect was used to examine the DPM dispersion pattern with unsteady state analysis. During the 200 s of loading operation, high DPM levels were identified in the face and dead-end entry regions. This study can be used for mining engineer as guidance to design and setup local ventilation, select DPM control strategies and for DPM annual training for underground miners.展开更多
This study applied the numerical simulator tool FDS (fire dynamics simulator), Version 5.53, and focused on the simulation of the natural smoke flow ventilation design system, an innovative ventilation design using ...This study applied the numerical simulator tool FDS (fire dynamics simulator), Version 5.53, and focused on the simulation of the natural smoke flow ventilation design system, an innovative ventilation design using the parallel processing technology MPI (message passing interface). The design was then compared with the exhaust efficiency of a typical natural smoke vent. The natural smoke flow ventilation design system was located at the top of the factory, where smoke streams effectively converged. Therefore, the source of fire was designed to be 2 MW, which has a better exhaust efficiency than typical natural smoke vent with same area. The simulation discovered that the exhaust efficiency of the natural smoke ventilation design systems is higher than that of typical natural smoke vent with 2 times the opening area and that was not affected by external wind speed, Instead, external wind speed can help to enhance the exhaust efficiency. Smoke exhaust of typical natural smoke vents was affected by external wind speed, even leading them to become air inlets which would disturb the flow of air indoors, leading to smoke accumulation within the factory.展开更多
文摘Diesel particulate matter (DPM) is considered to be carcinogenic after prolonged exposure. With more diesel- powered equipment used in underground mines, miners' exposure to DPM has become an increasing concern. This paper used computational fluid dynamics method to study the DPM dispersion in a dead-end entry with loading operation. The effects of different push-pull ventilation systems on DPM distribution were evaluated to improve the working conditions for underground miners. The four push-pull systems considered include: long push and short pull tubing; short push and long pull tubing, long push and curved pull tubing, and short push and curved pull tubing. A species transport model with buoyancy effect was used to examine the DPM dispersion pattern with unsteady state analysis. During the 200 s of loading operation, high DPM levels were identified in the face and dead-end entry regions. This study can be used for mining engineer as guidance to design and setup local ventilation, select DPM control strategies and for DPM annual training for underground miners.
文摘This study applied the numerical simulator tool FDS (fire dynamics simulator), Version 5.53, and focused on the simulation of the natural smoke flow ventilation design system, an innovative ventilation design using the parallel processing technology MPI (message passing interface). The design was then compared with the exhaust efficiency of a typical natural smoke vent. The natural smoke flow ventilation design system was located at the top of the factory, where smoke streams effectively converged. Therefore, the source of fire was designed to be 2 MW, which has a better exhaust efficiency than typical natural smoke vent with same area. The simulation discovered that the exhaust efficiency of the natural smoke ventilation design systems is higher than that of typical natural smoke vent with 2 times the opening area and that was not affected by external wind speed, Instead, external wind speed can help to enhance the exhaust efficiency. Smoke exhaust of typical natural smoke vents was affected by external wind speed, even leading them to become air inlets which would disturb the flow of air indoors, leading to smoke accumulation within the factory.