A more efficient mine ventilation system, the ventilation-on-demand (VOD) system, has been proposed and tested in Canadian mines recently. In order to supply the required air volumes to the production areas of a min...A more efficient mine ventilation system, the ventilation-on-demand (VOD) system, has been proposed and tested in Canadian mines recently. In order to supply the required air volumes to the production areas of a mine, operators need to know the cause and effect of any changes requested from the VOD system. The sensitivity analysis is developed through generating a cause and effect matrix of sensitivity factors on given parameter changes in a ventilation system. This new utility, which was incorporated in the 3D-CANVENT mine ventilation simulator, is able to predict the airflow distributions in a ventilation network when underground conditions and ventilation controls are changed. For a primary ventilation system, the software can determine the optimal operating speed of the main fans to satisfy the airflow requirements in underground workings without necessarily using booster fans and regulators locally. An optimized fan operating speed time-table would assure variable demand-based fresh air delivery to the production areas effectively, while generating significant savings in energy consumption and operating cost.展开更多
In order to overcome the disadvantages of diagonal connection structures that are complex and for which it is difficult to derive the discriminant of the airflow directions of airways, we have applied a multiple regre...In order to overcome the disadvantages of diagonal connection structures that are complex and for which it is difficult to derive the discriminant of the airflow directions of airways, we have applied a multiple regression method to analyze the effect, of changing the rules of mine airflows, on the stability of a mine ventilation system. The amount of air ( Qj ) is determined for the major airway and an optimum regression equation was derived for Qi as a function of the independent variable ( Ri ), i.e., the venti- lation resistance between different airways. Therefore, corresponding countermeasures are proposed according to the changes in airflows. The calculated results agree very well with our practical situation, indicating that multiple regression analysis is simple, quick and practical and is therefore an effective method to analyze the stability of mine ventilation systems.展开更多
文摘A more efficient mine ventilation system, the ventilation-on-demand (VOD) system, has been proposed and tested in Canadian mines recently. In order to supply the required air volumes to the production areas of a mine, operators need to know the cause and effect of any changes requested from the VOD system. The sensitivity analysis is developed through generating a cause and effect matrix of sensitivity factors on given parameter changes in a ventilation system. This new utility, which was incorporated in the 3D-CANVENT mine ventilation simulator, is able to predict the airflow distributions in a ventilation network when underground conditions and ventilation controls are changed. For a primary ventilation system, the software can determine the optimal operating speed of the main fans to satisfy the airflow requirements in underground workings without necessarily using booster fans and regulators locally. An optimized fan operating speed time-table would assure variable demand-based fresh air delivery to the production areas effectively, while generating significant savings in energy consumption and operating cost.
基金Project F010206 supported by the National Natural Science Foundation of China
文摘In order to overcome the disadvantages of diagonal connection structures that are complex and for which it is difficult to derive the discriminant of the airflow directions of airways, we have applied a multiple regression method to analyze the effect, of changing the rules of mine airflows, on the stability of a mine ventilation system. The amount of air ( Qj ) is determined for the major airway and an optimum regression equation was derived for Qi as a function of the independent variable ( Ri ), i.e., the venti- lation resistance between different airways. Therefore, corresponding countermeasures are proposed according to the changes in airflows. The calculated results agree very well with our practical situation, indicating that multiple regression analysis is simple, quick and practical and is therefore an effective method to analyze the stability of mine ventilation systems.