A new method for the control of the speed of an ultrasonic motor and its implementation are proposed. The method is merely used by detecting the time when motor′s monitor signal reaches a non zero reference valu...A new method for the control of the speed of an ultrasonic motor and its implementation are proposed. The method is merely used by detecting the time when motor′s monitor signal reaches a non zero reference value than a zero one, the direction, in which the driving frequency of the motor should be shifted, can be promptly calculated. With the aid of a CPU and the phase locked frequency doubling technique, the motor can be steadily driven in a wide range of frequency and the optimum frequency can be captured rapidly and precisely. Experiment shows that the above method is available.展开更多
Hydraulic butterfly valves have been widely applied in marine engineering because of their large switching torque, low pressure loss and suitability for large and medium diameter pipelines. Due to control problems res...Hydraulic butterfly valves have been widely applied in marine engineering because of their large switching torque, low pressure loss and suitability for large and medium diameter pipelines. Due to control problems resulting from switching angular speeds of the hydraulic butterfly valve, a throttle-governing control mode has been widely adopted, and detailed analysis has been carried out worldwide on the structural principle concerning speed-regulation and the load torque on the shaft while opening or closing a hydraulic butterfly valve. However relevant reports have yet been published on the change law, the error and the influencing factors of the rotational angular velocity of the hydraulic butterfly valve while opening and closing. In this article, research was based on some common specifications of a hydraulic butterfly valve with a symmetrical valve flap existing in a marine environment. The throttle governing system supplied by the accumulator to achieve the switching of the hydraulic control valve was adopted, and the mathematical models of the system were established in the actual conditions while the numerical simulations took place. The simulation results and analysis show that the rotational angular velocity and the error of the hydraulic butterfly valve while switching is influenced greatly by the drainage amount of the accumulator, resulting in pressure loss in the pipeline, the temperature of hydraulic medium and the load of the hydraulic butterfly valve. The simulation results and analysis provide a theoretical basis for the choice of the total capacity of the accumulator and pipeline diameters in a throttle governing system with a hydraulic butterfly valve.It also determines the type and specification of the hydraulic butterfly valve and the design of motion parameters of the transported fluid.展开更多
The speed with which the information technology has evolved is unparallel to any other technological evolution man has ever witnessed. From hospitals to classrooms, technology seems to have taken over people's lives....The speed with which the information technology has evolved is unparallel to any other technological evolution man has ever witnessed. From hospitals to classrooms, technology seems to have taken over people's lives. Where there have been studies to see the impact of technology in varying aspects of life, there seem to be little or no studies on the actual rate of increase in usage of e-technologies among university students and why they have become so popular. This paper uses a survey tool that captures responses from 900 students to study the rate of increase in student use of various e-technologies in and out of classrooms along with some viable reasons why students are acquiring and using such technologies and suggests ways to use this study to better understand student behavior in terms of e-cheating, and how to enhance teaching and learning environments for students.展开更多
Experimental investigations were conducted to study the film cooling performance in a low speed annular cascades using Thermochromic Liquid Crystal (TLC) technique. The test blade was placed in the second stage, where...Experimental investigations were conducted to study the film cooling performance in a low speed annular cascades using Thermochromic Liquid Crystal (TLC) technique. The test blade was placed in the second stage, where 18 blades were installed with chord length of 124.3 mm and height of 99 mm. A film hole with diameter of 4 mm, angled 28° to the tangential of the pressure surface in streamwise, was set in the middle span of the blade. The Reynolds number based on the outlet mainstream velocity and the blade chord length of the second stage varied from 1.52×105 to 2.00×105. All measurements were made with the blowing ratio varying from 0.3 to 3.0. Air and CO2 worked as coolant to achieve the coolant-to-mainstream density ratio of 1.03 and 1.57. The results show that the film coverage and cooling effectiveness scale up with the blowing ratio. Higher density ratio can generate larger film cooling coverage and effectiveness. The higher the Reynolds number, the larger the film coverage and cooling effectiveness.展开更多
At GMT time 13:19, August 8, 2017, an M1.0 earthquake struck the Jiuzhaigou region in Sichuan Province, China, causing severe damages and casualties. To investigate the source properties, seismogenic structures, and ...At GMT time 13:19, August 8, 2017, an M1.0 earthquake struck the Jiuzhaigou region in Sichuan Province, China, causing severe damages and casualties. To investigate the source properties, seismogenic structures, and seismic hazards, we systematically analyzed the tectonic environment, crustal velocity structure in the source region, source parameters and rupture process, Coulomb failure stress changes, and 3-D features of the rupture plane of the Jiuzhaigou earthquake. Our results indicate the following: (1) The Jiuzhaigou earthquake occurred on an unmarked fault belonging to the transition zone of the east Kunlun fault system and is located northwest of the Huya fault. (2) Both the mainshock and aftershock rupture zones are located in a region where crustal seismic velocity changes dramatically. Southeast to the source region, shear wave velocity at the middle to lower crust is significantly low, but it rapidly increases northeastward and lies close to the background velocity across the rupture fault. (3) The aftershock zone is narrow and distributes along the northwest-southeast trend, and most aftershocks occur within a depth range of 5-20 km. (4) The focal mechanism of the Jiuzhaigou earthquake indicates a left-lateral strike-slip fault, with strike, dip, and rake angles of 152~, 74~ and 8~, respectively. The hypocenter depth measures 20 km, whereas the centroid depth is about 6 kin. The co-seismic rupture mainly concentrates at depths of 3-13 km, with a moment magnitude (Mw) of 6.5. (5) The co-seismic rupture also strengthens the Coulomb failure stress at the two ends of the rupture fault and the east segment of the Tazang fault. Aftershocks relocation results together with geological surveys indicate that the causative fault is a near vertical fault with notable spatial variations: dip angle varies within 660-89~ from northwest to southeast and the average dip angle measures -84~. The results of this work are of fundamental importance for further studies on the source characteristics, tectonic environment, and seismic hazard evaluation of the Jiuzhaigou earthquake.展开更多
文摘A new method for the control of the speed of an ultrasonic motor and its implementation are proposed. The method is merely used by detecting the time when motor′s monitor signal reaches a non zero reference value than a zero one, the direction, in which the driving frequency of the motor should be shifted, can be promptly calculated. With the aid of a CPU and the phase locked frequency doubling technique, the motor can be steadily driven in a wide range of frequency and the optimum frequency can be captured rapidly and precisely. Experiment shows that the above method is available.
文摘Hydraulic butterfly valves have been widely applied in marine engineering because of their large switching torque, low pressure loss and suitability for large and medium diameter pipelines. Due to control problems resulting from switching angular speeds of the hydraulic butterfly valve, a throttle-governing control mode has been widely adopted, and detailed analysis has been carried out worldwide on the structural principle concerning speed-regulation and the load torque on the shaft while opening or closing a hydraulic butterfly valve. However relevant reports have yet been published on the change law, the error and the influencing factors of the rotational angular velocity of the hydraulic butterfly valve while opening and closing. In this article, research was based on some common specifications of a hydraulic butterfly valve with a symmetrical valve flap existing in a marine environment. The throttle governing system supplied by the accumulator to achieve the switching of the hydraulic control valve was adopted, and the mathematical models of the system were established in the actual conditions while the numerical simulations took place. The simulation results and analysis show that the rotational angular velocity and the error of the hydraulic butterfly valve while switching is influenced greatly by the drainage amount of the accumulator, resulting in pressure loss in the pipeline, the temperature of hydraulic medium and the load of the hydraulic butterfly valve. The simulation results and analysis provide a theoretical basis for the choice of the total capacity of the accumulator and pipeline diameters in a throttle governing system with a hydraulic butterfly valve.It also determines the type and specification of the hydraulic butterfly valve and the design of motion parameters of the transported fluid.
文摘The speed with which the information technology has evolved is unparallel to any other technological evolution man has ever witnessed. From hospitals to classrooms, technology seems to have taken over people's lives. Where there have been studies to see the impact of technology in varying aspects of life, there seem to be little or no studies on the actual rate of increase in usage of e-technologies among university students and why they have become so popular. This paper uses a survey tool that captures responses from 900 students to study the rate of increase in student use of various e-technologies in and out of classrooms along with some viable reasons why students are acquiring and using such technologies and suggests ways to use this study to better understand student behavior in terms of e-cheating, and how to enhance teaching and learning environments for students.
基金the funding support from the construction of National 985 Program
文摘Experimental investigations were conducted to study the film cooling performance in a low speed annular cascades using Thermochromic Liquid Crystal (TLC) technique. The test blade was placed in the second stage, where 18 blades were installed with chord length of 124.3 mm and height of 99 mm. A film hole with diameter of 4 mm, angled 28° to the tangential of the pressure surface in streamwise, was set in the middle span of the blade. The Reynolds number based on the outlet mainstream velocity and the blade chord length of the second stage varied from 1.52×105 to 2.00×105. All measurements were made with the blowing ratio varying from 0.3 to 3.0. Air and CO2 worked as coolant to achieve the coolant-to-mainstream density ratio of 1.03 and 1.57. The results show that the film coverage and cooling effectiveness scale up with the blowing ratio. Higher density ratio can generate larger film cooling coverage and effectiveness. The higher the Reynolds number, the larger the film coverage and cooling effectiveness.
基金funded by the Seismological Bureau Spark Program Project(Grant No.XH15007)the National Natural Science Foundation of China(Grant Nos.41604058,41574057,41621091)the Sichuan-Yunnan National Seismological Monitoring and Prediction Experimental Station Project(Grant No.2016CESE0204)
文摘At GMT time 13:19, August 8, 2017, an M1.0 earthquake struck the Jiuzhaigou region in Sichuan Province, China, causing severe damages and casualties. To investigate the source properties, seismogenic structures, and seismic hazards, we systematically analyzed the tectonic environment, crustal velocity structure in the source region, source parameters and rupture process, Coulomb failure stress changes, and 3-D features of the rupture plane of the Jiuzhaigou earthquake. Our results indicate the following: (1) The Jiuzhaigou earthquake occurred on an unmarked fault belonging to the transition zone of the east Kunlun fault system and is located northwest of the Huya fault. (2) Both the mainshock and aftershock rupture zones are located in a region where crustal seismic velocity changes dramatically. Southeast to the source region, shear wave velocity at the middle to lower crust is significantly low, but it rapidly increases northeastward and lies close to the background velocity across the rupture fault. (3) The aftershock zone is narrow and distributes along the northwest-southeast trend, and most aftershocks occur within a depth range of 5-20 km. (4) The focal mechanism of the Jiuzhaigou earthquake indicates a left-lateral strike-slip fault, with strike, dip, and rake angles of 152~, 74~ and 8~, respectively. The hypocenter depth measures 20 km, whereas the centroid depth is about 6 kin. The co-seismic rupture mainly concentrates at depths of 3-13 km, with a moment magnitude (Mw) of 6.5. (5) The co-seismic rupture also strengthens the Coulomb failure stress at the two ends of the rupture fault and the east segment of the Tazang fault. Aftershocks relocation results together with geological surveys indicate that the causative fault is a near vertical fault with notable spatial variations: dip angle varies within 660-89~ from northwest to southeast and the average dip angle measures -84~. The results of this work are of fundamental importance for further studies on the source characteristics, tectonic environment, and seismic hazard evaluation of the Jiuzhaigou earthquake.