A new compensation method for angular rate estimation of non-gyro inertial measurement unit (NGIMU) is proposed in terms of the existence of aecelerometer mounting error, which seriously affects the precision of nav...A new compensation method for angular rate estimation of non-gyro inertial measurement unit (NGIMU) is proposed in terms of the existence of aecelerometer mounting error, which seriously affects the precision of navigation parameter estimation. Using the accelerometer output error function, the algorithm compensates the posture parameters in the traditional algorithm of angular rate estimation to reduce the accelerometer mounting error. According to the traditional aceelerometer configurations, a novel nine-accelerometer confi-guration of NGIMU is presented with its mathematic model constructed. The semi-hardware simulations of the proposed algorithm are investigated based on the presented NGIMU configuration, and the results show the effectivity of the new algorithm.展开更多
基金Sponsored by the National Natural Science Foundation of China (Grant No.60901042)the Natural Science Foundation of Heilongjiang Province(Grant No.F2007-08)
文摘A new compensation method for angular rate estimation of non-gyro inertial measurement unit (NGIMU) is proposed in terms of the existence of aecelerometer mounting error, which seriously affects the precision of navigation parameter estimation. Using the accelerometer output error function, the algorithm compensates the posture parameters in the traditional algorithm of angular rate estimation to reduce the accelerometer mounting error. According to the traditional aceelerometer configurations, a novel nine-accelerometer confi-guration of NGIMU is presented with its mathematic model constructed. The semi-hardware simulations of the proposed algorithm are investigated based on the presented NGIMU configuration, and the results show the effectivity of the new algorithm.