In order to analyze the heterogeneity in vehicular traffic speed, a new method that integrates cluster analysis and probability distribution function fitting is presented. First, for identifying the optimal number of ...In order to analyze the heterogeneity in vehicular traffic speed, a new method that integrates cluster analysis and probability distribution function fitting is presented. First, for identifying the optimal number of clusters, the two-step cluster method is applied to analyze actual speed data, which suggests that dividing speed data into two clusters can best reflect the intrinsic patterns of traffic flows. Such information is then taken as guidance in probability distribution function fitting. The normal, skew-normal and skew-t distribution functions are used to fit the probability distribution of each cluster respectively, which suggests that the skew-t distribution has the highest fitting accuracy; the second is skew-normal distribution; the worst is normal distribution. Model analysis results demonstrate that the proposed mixture model has a better fitting and generalization capability than the conventional single model. In addition, the new method is more flexible in terms of data fitting and can provide a more accurate model of speed distribution.展开更多
A new technique for the analysis of the three-dimensional collapse failure mechanism and the ground surface settlements for the large-diameter shield tunnels were presented.The technique is based on a velocity field m...A new technique for the analysis of the three-dimensional collapse failure mechanism and the ground surface settlements for the large-diameter shield tunnels were presented.The technique is based on a velocity field model using more different truncated solid conical blocks to clarify the multiblock failure mechanism.Furthermore,the shape of blocks between the failure surface and the tunnel face was considered as an entire circle,and the supporting pressure was assumed as non-uniform distribution on the tunnel face and increased with the tunnel embedded depth.The ground surface settlements and failure mechanism above large-diameter shield tunnels were also investigated under different supporting pressures by the finite difference method.展开更多
The descriptive capabilities of the banded speed cosmological model are shown. In particular, an in-depth analysis related to the actual physical meaning of Planck's unit is given in the framework of the banded distr...The descriptive capabilities of the banded speed cosmological model are shown. In particular, an in-depth analysis related to the actual physical meaning of Planck's unit is given in the framework of the banded distribution of physical quantities. From this analysis the richness and flexibility of the model's description capabilities is derived, with particular attention devoted to the ability of using the same relationships for describing both microcosm and macrocosm and also young and old universe. Finally the cited descriptive capabilities are used for deriving a very simple and intuitive explanation of the "darkness" of dark matter.展开更多
The lateral distributions of depth-averaged velocity in open compound channels with emerged and submerged vegetated floodplains were analyzed based on the analytical solution of the depth-integrated Reynolds-Averaged ...The lateral distributions of depth-averaged velocity in open compound channels with emerged and submerged vegetated floodplains were analyzed based on the analytical solution of the depth-integrated Reynolds-Averaged Navier-Stokes equation with a term to account for the effects of vegetation.The three cases considered for open channels were two-stage rectangular channel with emerged vegetated floodplain,rectangular channel with submerged vegetated corner,and two-stage rectangular channel with submerged vegetated floodplain,respectively.To predict the depth-averaged velocity with submerged vegetated floodplains,we proposed a new method based on a two-layer approach where flow above and through the vegetation layer was described separately.Moreover,further experiments in the two-stage rectangular channel with submerged vegetated floodplain were carried out to verify the results.The analytical solutions of the cases indicated that the corresponding analytical depth-averaged velocity distributions agree well with the simulated and experimental prediction.The analytical solutions of the cases with theoretical foundation and without programming calculation were reasonable and applicable,which were more convenient than numerical simulations.The analytical solutions provided a way for future researches to solve the problems of submerged vegetation and discontinuous phenomenon of depth-averaged velocity at the stage point for compound channels.Understanding the hydraulics of flow in compound channels with vegetated floodplains is very important for supporting the management of fluvial processes.展开更多
The use of diffusers around the horizontal-axis wind turbines has been widely studied since the diffuser improves the power coefficient of the turbine and it is often called DAWTs (diffuser augmented wind turbines)....The use of diffusers around the horizontal-axis wind turbines has been widely studied since the diffuser improves the power coefficient of the turbine and it is often called DAWTs (diffuser augmented wind turbines).Turbines using diffuser are called DWATs (Diffuser Augmented Turbines),and have efficiency bigger than the Betz limit (maximum energy flow extracted = 59.26%). Thus, this study presents a mathematical model describing the behavior of the velocity profile internally to a diffuser according to the characteristics of flow and geometry of a conical diffuser. The results are compared with experimental data and show good agreement.展开更多
Based on the Navier-Stokes equations and the Spalart-Allmaras turbulence model,three dimensional turbulent flow fields in centrifugal pump with long-mid-short blade complex impeller are calculated and analyzed numeric...Based on the Navier-Stokes equations and the Spalart-Allmaras turbulence model,three dimensional turbulent flow fields in centrifugal pump with long-mid-short blade complex impeller are calculated and analyzed numerically.The relative velocity and pressure distributions in the flowpart are obtained.It is found that the flow in the passage of the complex impeller is unsymmetrical due to the joint action between volute and impeller.The back-flow region is at inlet of long-blade suction side,near middle part of long-blade pressure side and outlet of short-blade suction side.The flow near volute throat is affected greatly by volute.The relative velocity is large and it is easy to bring back flow at outlet of the complex impeller near volute throat.The static and total pressure rise uniformly from inlet to outlet in the impeller.At impeller outlet,the pressure periodically decreases from pressure side to suction side,and then the static pressure sharply rise near the throat.The experimental results show that the back flow in the impeller has an important influence on the performance of pump.展开更多
A memory reduction technique is proposed for solving stationary kinetic model equations. As implied by an integral solution of the stationary kinetic equation, a velocity distribution function can be reconstructed fro...A memory reduction technique is proposed for solving stationary kinetic model equations. As implied by an integral solution of the stationary kinetic equation, a velocity distribution function can be reconstructed from given macroscopic variables. Based on this fact, we propose a technique to reconstruct distribution function at discrete level, and employ it to develop an implicit numerical method for kinetic equations. The new implicit method only stores the macroscopic quantities which appear in the collision term, and does not store the distribution functions. As a result, enormous memory requirement for solving kinetic equations is totally relieved. Several boundary conditions, such as, inlet, outlet and isothermal boundaries, are discussed. Some numerical tests demonstrate the validity and efficiency of the technique.The new implicit solver provides nearly identical solution as the explicit kinetic solver, while the memory requirement is on the same order as the Navier–Stokes solver.展开更多
This paper describes a new model for obtaining analytical solutions of peristaltic flow through eccentric annuli. A mathematical model of peristaltic pumping of a fluid mixture (as blood model) in a circular eccentr...This paper describes a new model for obtaining analytical solutions of peristaltic flow through eccentric annuli. A mathematical model of peristaltic pumping of a fluid mixture (as blood model) in a circular eccentric cylinders is presented and it is motivated due to the fact that thread injection is a promising method for placing medical implants within the human body with minimum surgical trauma. For the eccentric annuli, the inner cylinder is rigid and moving with a constant velocity V, and the outer one is hollow flexible cylinder that has a sinusoidal wave traveling down its wall. The coupled differential equations for both the fluid and the particle phases have been solved by using two methods and the expressions for the velocity distribution of fluid and particle phase, flow rate, pressure drop, friction forces at the inner and outer cylinders have been derived. The results obtained are discussed in brief. The significance of the particle concentration and the eccentricity parameter as well as the nature of the basic flow has been well explained.展开更多
In this paper,the gluon distribution is extracted from the KLR-AdS/CFT saturation model and used to investigate net-baryon and net-kaon rapidity distributions in ultrarelativistic heavy-ion collisions.With the same pa...In this paper,the gluon distribution is extracted from the KLR-AdS/CFT saturation model and used to investigate net-baryon and net-kaon rapidity distributions in ultrarelativistic heavy-ion collisions.With the same parameters of the saturation model fitting to HERA data and an χ 2 analysis of the overall constant C,the theoretical results are in good agreement with RHIC data in Au+Au collisions at √ s = 0.2 TeV.Then,we present the predictive results for net-baryon rapidity distributions in central Pb+Pb collisions at LHC energies of √ s = 2.76,3.94,and 5.52 TeV,and give the corresponding values of dN/dy for net-baryon at y = 0.展开更多
基金The National Science Foundation by Changjiang Scholarship of Ministry of Education of China(No.BCS-0527508)the Joint Research Fund for Overseas Natural Science of China(No.51250110075)+1 种基金the Natural Science Foundation of Jiangsu Province(No.BK200910046)the Postdoctoral Science Foundation of Jiangsu Province(No.0901005C)
文摘In order to analyze the heterogeneity in vehicular traffic speed, a new method that integrates cluster analysis and probability distribution function fitting is presented. First, for identifying the optimal number of clusters, the two-step cluster method is applied to analyze actual speed data, which suggests that dividing speed data into two clusters can best reflect the intrinsic patterns of traffic flows. Such information is then taken as guidance in probability distribution function fitting. The normal, skew-normal and skew-t distribution functions are used to fit the probability distribution of each cluster respectively, which suggests that the skew-t distribution has the highest fitting accuracy; the second is skew-normal distribution; the worst is normal distribution. Model analysis results demonstrate that the proposed mixture model has a better fitting and generalization capability than the conventional single model. In addition, the new method is more flexible in terms of data fitting and can provide a more accurate model of speed distribution.
基金Project(41202220) supported by the National Natural Science Foundation of ChinaProject(2011YYL034) supported by the Fundamental Research Funds for the Central Universities,China
文摘A new technique for the analysis of the three-dimensional collapse failure mechanism and the ground surface settlements for the large-diameter shield tunnels were presented.The technique is based on a velocity field model using more different truncated solid conical blocks to clarify the multiblock failure mechanism.Furthermore,the shape of blocks between the failure surface and the tunnel face was considered as an entire circle,and the supporting pressure was assumed as non-uniform distribution on the tunnel face and increased with the tunnel embedded depth.The ground surface settlements and failure mechanism above large-diameter shield tunnels were also investigated under different supporting pressures by the finite difference method.
文摘The descriptive capabilities of the banded speed cosmological model are shown. In particular, an in-depth analysis related to the actual physical meaning of Planck's unit is given in the framework of the banded distribution of physical quantities. From this analysis the richness and flexibility of the model's description capabilities is derived, with particular attention devoted to the ability of using the same relationships for describing both microcosm and macrocosm and also young and old universe. Finally the cited descriptive capabilities are used for deriving a very simple and intuitive explanation of the "darkness" of dark matter.
基金Under the auspices of National Basic Research Program of China(No.2011CB403303)National Key Research and Development Program of China(No.2016YFC0402408-5)National Natural Science Foundation of China(No.51179181,40788001)
文摘The lateral distributions of depth-averaged velocity in open compound channels with emerged and submerged vegetated floodplains were analyzed based on the analytical solution of the depth-integrated Reynolds-Averaged Navier-Stokes equation with a term to account for the effects of vegetation.The three cases considered for open channels were two-stage rectangular channel with emerged vegetated floodplain,rectangular channel with submerged vegetated corner,and two-stage rectangular channel with submerged vegetated floodplain,respectively.To predict the depth-averaged velocity with submerged vegetated floodplains,we proposed a new method based on a two-layer approach where flow above and through the vegetation layer was described separately.Moreover,further experiments in the two-stage rectangular channel with submerged vegetated floodplain were carried out to verify the results.The analytical solutions of the cases indicated that the corresponding analytical depth-averaged velocity distributions agree well with the simulated and experimental prediction.The analytical solutions of the cases with theoretical foundation and without programming calculation were reasonable and applicable,which were more convenient than numerical simulations.The analytical solutions provided a way for future researches to solve the problems of submerged vegetation and discontinuous phenomenon of depth-averaged velocity at the stage point for compound channels.Understanding the hydraulics of flow in compound channels with vegetated floodplains is very important for supporting the management of fluvial processes.
文摘The use of diffusers around the horizontal-axis wind turbines has been widely studied since the diffuser improves the power coefficient of the turbine and it is often called DAWTs (diffuser augmented wind turbines).Turbines using diffuser are called DWATs (Diffuser Augmented Turbines),and have efficiency bigger than the Betz limit (maximum energy flow extracted = 59.26%). Thus, this study presents a mathematical model describing the behavior of the velocity profile internally to a diffuser according to the characteristics of flow and geometry of a conical diffuser. The results are compared with experimental data and show good agreement.
基金supported by National Natural Science Foundation of China granted No.20706049 and No.50976105Zhejiang Provincial Natural Science Foundation Granted No.R1100530 and No.R107635
文摘Based on the Navier-Stokes equations and the Spalart-Allmaras turbulence model,three dimensional turbulent flow fields in centrifugal pump with long-mid-short blade complex impeller are calculated and analyzed numerically.The relative velocity and pressure distributions in the flowpart are obtained.It is found that the flow in the passage of the complex impeller is unsymmetrical due to the joint action between volute and impeller.The back-flow region is at inlet of long-blade suction side,near middle part of long-blade pressure side and outlet of short-blade suction side.The flow near volute throat is affected greatly by volute.The relative velocity is large and it is easy to bring back flow at outlet of the complex impeller near volute throat.The static and total pressure rise uniformly from inlet to outlet in the impeller.At impeller outlet,the pressure periodically decreases from pressure side to suction side,and then the static pressure sharply rise near the throat.The experimental results show that the back flow in the impeller has an important influence on the performance of pump.
基金supported by the National Natural Science Foundation of China(11602091 and 91530319)the National Key Research and Development Plan(2016YFB0600805)
文摘A memory reduction technique is proposed for solving stationary kinetic model equations. As implied by an integral solution of the stationary kinetic equation, a velocity distribution function can be reconstructed from given macroscopic variables. Based on this fact, we propose a technique to reconstruct distribution function at discrete level, and employ it to develop an implicit numerical method for kinetic equations. The new implicit method only stores the macroscopic quantities which appear in the collision term, and does not store the distribution functions. As a result, enormous memory requirement for solving kinetic equations is totally relieved. Several boundary conditions, such as, inlet, outlet and isothermal boundaries, are discussed. Some numerical tests demonstrate the validity and efficiency of the technique.The new implicit solver provides nearly identical solution as the explicit kinetic solver, while the memory requirement is on the same order as the Navier–Stokes solver.
文摘This paper describes a new model for obtaining analytical solutions of peristaltic flow through eccentric annuli. A mathematical model of peristaltic pumping of a fluid mixture (as blood model) in a circular eccentric cylinders is presented and it is motivated due to the fact that thread injection is a promising method for placing medical implants within the human body with minimum surgical trauma. For the eccentric annuli, the inner cylinder is rigid and moving with a constant velocity V, and the outer one is hollow flexible cylinder that has a sinusoidal wave traveling down its wall. The coupled differential equations for both the fluid and the particle phases have been solved by using two methods and the expressions for the velocity distribution of fluid and particle phase, flow rate, pressure drop, friction forces at the inner and outer cylinders have been derived. The results obtained are discussed in brief. The significance of the particle concentration and the eccentricity parameter as well as the nature of the basic flow has been well explained.
基金Supported by Natural Science Foundation of Hebei Province under Grant No. A2012210043
文摘In this paper,the gluon distribution is extracted from the KLR-AdS/CFT saturation model and used to investigate net-baryon and net-kaon rapidity distributions in ultrarelativistic heavy-ion collisions.With the same parameters of the saturation model fitting to HERA data and an χ 2 analysis of the overall constant C,the theoretical results are in good agreement with RHIC data in Au+Au collisions at √ s = 0.2 TeV.Then,we present the predictive results for net-baryon rapidity distributions in central Pb+Pb collisions at LHC energies of √ s = 2.76,3.94,and 5.52 TeV,and give the corresponding values of dN/dy for net-baryon at y = 0.