Statistical analysis of turbulent and gusty characteristics in the atmospheric boundary layer under weak wind period has been carried out.The data used in the analysis were from the multilevel ultrasonic anemometer-th...Statistical analysis of turbulent and gusty characteristics in the atmospheric boundary layer under weak wind period has been carried out.The data used in the analysis were from the multilevel ultrasonic anemometer-thermometers at 47 m,120 m,and 280 m levels on Beijing 325 m meteorological tower.The time series of 3D atmospheric velocity were analyzed by using conventional Fourier spectral analysis and decompose into three parts:basic mean flow(period > 10 min),gusty disturbances(1 min < period < 10 min)and turbulence fluctuations(period < 1 min).The results show that under weak mean wind condition:1)the gusty disturbances are the most strong fluctuations,contribute about 60% kinetic energy of eddy kinetic energy and 80% downward flux of momentum,although both the eddy kinetic energy and momentum transport are small in comparison with those in strong mean wind condition;2)the gusty wind disturbances are anisotropic;3)the gusty wind disturbances have obviously coherent structure,and their horizontal and vertical component are negatively correlated and make downward transport of momentum more effectively;4)the friction velocities related to turbulence and gusty wind are approximately constant with height in the surface layer.展开更多
Based on heat and mass transfer characteristics of spontaneous combustion of coal,Arrhenius equation and the Ranz-Marshall correlation,a novel approach was proposed in this paper to estimate oxygen consumption rate of...Based on heat and mass transfer characteristics of spontaneous combustion of coal,Arrhenius equation and the Ranz-Marshall correlation,a novel approach was proposed in this paper to estimate oxygen consumption rate of self-ignition of coal at high temperature.Compared with the conventional methods,this approach involves not only kinetic properties of self-ignition of coal and temperature,but also the ambient air flow characteristics and diameter of coal particle.To testify the proposed approach,oxygen consumption rates at high temperature were measured by the programmable isothermal oven experiments.Comparisons between experimental and theoretical results indicate that the rates of oxygen depletion calculated by the proposed approach agree well with those measured from laboratory-scale experiments,which further validates the proposed approach.展开更多
A memory reduction technique is proposed for solving stationary kinetic model equations. As implied by an integral solution of the stationary kinetic equation, a velocity distribution function can be reconstructed fro...A memory reduction technique is proposed for solving stationary kinetic model equations. As implied by an integral solution of the stationary kinetic equation, a velocity distribution function can be reconstructed from given macroscopic variables. Based on this fact, we propose a technique to reconstruct distribution function at discrete level, and employ it to develop an implicit numerical method for kinetic equations. The new implicit method only stores the macroscopic quantities which appear in the collision term, and does not store the distribution functions. As a result, enormous memory requirement for solving kinetic equations is totally relieved. Several boundary conditions, such as, inlet, outlet and isothermal boundaries, are discussed. Some numerical tests demonstrate the validity and efficiency of the technique.The new implicit solver provides nearly identical solution as the explicit kinetic solver, while the memory requirement is on the same order as the Navier–Stokes solver.展开更多
Time sequence signals of streamwise and normal velocity components,as well as velocity strain rate,at different vertical locations in the turbulent boundary layer over a smooth flat plate in a wind tunnel have been fi...Time sequence signals of streamwise and normal velocity components,as well as velocity strain rate,at different vertical locations in the turbulent boundary layer over a smooth flat plate in a wind tunnel have been finely examined by the use of double-sensor hot-wire anemometry.The local module maximum for wavelet coefficient of longitudinal velocity component,as a detecting index,is employed to educe the ejection and sweep process of the coherent structure burst in the turbulent boundary layer from the random fluctuating background.The coherent waveforms of Reynolds stress residual contribution term for random fluctuations to coherent structure,as well as the velocity strain rate of coherent structure,are extracted by the conditional phase average technique.Based on the theoretical analysis of eddy viscosity coefficient in complex eddy viscosity model for coherent structure,the macro-relaxation effect between Reynolds stress residual contribution term of random fluctuations to coherent structure and the velocity strain rate of coherent structure is studied and the variations of the phase difference between them across the turbulent boundary layer are investigated experimentally.The rationality of complex eddy viscosity model for coherent structure is confirmed through the investigation.展开更多
Two finite-element models of the CRTS II slab track are presented to simulate temperature-induced deformations of the concrete track slab with no deterioration or with a deteriorated cement asphalt mortar(CAM).One mod...Two finite-element models of the CRTS II slab track are presented to simulate temperature-induced deformations of the concrete track slab with no deterioration or with a deteriorated cement asphalt mortar(CAM).One model,which considers the fully bonding interface between the slab and the CAM layer,could applied to a track that is in good condition;the other model uses cohesive zone elements to simulate the deteriorated CAM with some possible interfacial separation and slip.Utilizing both of the models,temperature-induced warp deformations of track under various temperature loads are investigated.The influence of temperature deformation on the dynamic properties of the track is analyzed based on the train-track coupled dynamics.Numerical results show that the deteriorated CAM layer can significantly increase temperature deformations of a CRTS II track slab,which would produce tiny rail irregularities.There are clear differences between the deformation shapes of the track slabs that have an inseparable mortar layer and those have a separable mortar layer.The track slab with a deteriorated mortar layer showed more open curl distortion than the track slab in good condition.The dynamical response index of the slab track is intensified to a certain level due to the temperature deformation;with an increase of the train speed,the track dynamical responses increased linearly.However,rail irregularities due to the temperature deformations are very tiny.Even if a track is exposed to extreme temperature loads and the mortar layer is deteriorated,temperature deformation can have a negligible effect on the track’s dynamical properties.展开更多
Let u = (Uh,U3) be a smooth solution of the 3-D Navier-Stokes equations in R3 × [0, T). It was proved that if u3 ∈ L^∞(0,T;Bp,q-1+3/p(R3)) for 3 〈 p,q 〈 oe and uh ∈ L^∞(0, T;BMO-1(R3)) with uh(...Let u = (Uh,U3) be a smooth solution of the 3-D Navier-Stokes equations in R3 × [0, T). It was proved that if u3 ∈ L^∞(0,T;Bp,q-1+3/p(R3)) for 3 〈 p,q 〈 oe and uh ∈ L^∞(0, T;BMO-1(R3)) with uh(T) ∈ VMO-1(R3), then u can be extended beyond T. This result generalizes the recent result proved by Gallagher et al. (2016), which requires u ∈ L^∞(O,T;Bp,^-11+3/P(R3)). Our proof is based on a new interior regularity criterion in terms of one velocity component, which is independent of interest.展开更多
We derive exact near-wall and centerline constraints and apply them to improve a recently proposed LPR model for finite Reynolds number(Re) turbulent channel flows.The analysis defines two constants which are invarian...We derive exact near-wall and centerline constraints and apply them to improve a recently proposed LPR model for finite Reynolds number(Re) turbulent channel flows.The analysis defines two constants which are invariant with Re and suggests two more layers for incorporating boundary effects in the prediction of the mean velocity profile in the turbulent channel.These results provide corrections for the LPR mixing length model and incorrect predictions near the wall and the centerline.Moreover,we show that the analysis,together with a set of well-defined sensitive indicators,is useful for assessment of numerical simulation data.展开更多
This paper studies the dynamic conducting crack propagation in piezoelectric solids under suddenly in-plane shear loading. Based on the integral transform methods and the Wiener-Hopf technique, the resulting mixed bou...This paper studies the dynamic conducting crack propagation in piezoelectric solids under suddenly in-plane shear loading. Based on the integral transform methods and the Wiener-Hopf technique, the resulting mixed boundary value problem is solved. The analytical solutions of the dynamic stress intensity factor and dynamic electric displacement intensity factor for the Mode II case are derived. Furthermore, the numerical results are presented to illustrate the characteristics of the dynamic crack propagation. It is shown that the universal functions for the dynamic stress and electric displacement intensity factors vanish if the crack propagation speed equals the generalized Rayleigh speed. The results indicate that the defined electro-mechanical coupling coefficient is of great importance to the universal functions and stress intensity factor history.展开更多
基金supported by the national natural Science Foundation of China(40830103 and 41375018)the national Basic Research Program of China(2010CB951804)the Research Program of the Chinese Academy of Sciences(XDA10010403)
文摘Statistical analysis of turbulent and gusty characteristics in the atmospheric boundary layer under weak wind period has been carried out.The data used in the analysis were from the multilevel ultrasonic anemometer-thermometers at 47 m,120 m,and 280 m levels on Beijing 325 m meteorological tower.The time series of 3D atmospheric velocity were analyzed by using conventional Fourier spectral analysis and decompose into three parts:basic mean flow(period > 10 min),gusty disturbances(1 min < period < 10 min)and turbulence fluctuations(period < 1 min).The results show that under weak mean wind condition:1)the gusty disturbances are the most strong fluctuations,contribute about 60% kinetic energy of eddy kinetic energy and 80% downward flux of momentum,although both the eddy kinetic energy and momentum transport are small in comparison with those in strong mean wind condition;2)the gusty wind disturbances are anisotropic;3)the gusty wind disturbances have obviously coherent structure,and their horizontal and vertical component are negatively correlated and make downward transport of momentum more effectively;4)the friction velocities related to turbulence and gusty wind are approximately constant with height in the surface layer.
基金Project(51534008) supported by the National Natural Science Foundation of China
文摘Based on heat and mass transfer characteristics of spontaneous combustion of coal,Arrhenius equation and the Ranz-Marshall correlation,a novel approach was proposed in this paper to estimate oxygen consumption rate of self-ignition of coal at high temperature.Compared with the conventional methods,this approach involves not only kinetic properties of self-ignition of coal and temperature,but also the ambient air flow characteristics and diameter of coal particle.To testify the proposed approach,oxygen consumption rates at high temperature were measured by the programmable isothermal oven experiments.Comparisons between experimental and theoretical results indicate that the rates of oxygen depletion calculated by the proposed approach agree well with those measured from laboratory-scale experiments,which further validates the proposed approach.
基金supported by the National Natural Science Foundation of China(11602091 and 91530319)the National Key Research and Development Plan(2016YFB0600805)
文摘A memory reduction technique is proposed for solving stationary kinetic model equations. As implied by an integral solution of the stationary kinetic equation, a velocity distribution function can be reconstructed from given macroscopic variables. Based on this fact, we propose a technique to reconstruct distribution function at discrete level, and employ it to develop an implicit numerical method for kinetic equations. The new implicit method only stores the macroscopic quantities which appear in the collision term, and does not store the distribution functions. As a result, enormous memory requirement for solving kinetic equations is totally relieved. Several boundary conditions, such as, inlet, outlet and isothermal boundaries, are discussed. Some numerical tests demonstrate the validity and efficiency of the technique.The new implicit solver provides nearly identical solution as the explicit kinetic solver, while the memory requirement is on the same order as the Navier–Stokes solver.
基金supported by the National Natural Science Foundation of China (Grant Nos. 10832001 and 10872145)Opening Subject of State Key Laboratory of Nonlinear Mechanics, Institute of Mechanics, Chinese Academy of Sciences
文摘Time sequence signals of streamwise and normal velocity components,as well as velocity strain rate,at different vertical locations in the turbulent boundary layer over a smooth flat plate in a wind tunnel have been finely examined by the use of double-sensor hot-wire anemometry.The local module maximum for wavelet coefficient of longitudinal velocity component,as a detecting index,is employed to educe the ejection and sweep process of the coherent structure burst in the turbulent boundary layer from the random fluctuating background.The coherent waveforms of Reynolds stress residual contribution term for random fluctuations to coherent structure,as well as the velocity strain rate of coherent structure,are extracted by the conditional phase average technique.Based on the theoretical analysis of eddy viscosity coefficient in complex eddy viscosity model for coherent structure,the macro-relaxation effect between Reynolds stress residual contribution term of random fluctuations to coherent structure and the velocity strain rate of coherent structure is studied and the variations of the phase difference between them across the turbulent boundary layer are investigated experimentally.The rationality of complex eddy viscosity model for coherent structure is confirmed through the investigation.
基金supported by the National Basic Research Program of China("973"Project)(Grant No.2013CB036202)the National Natural Science Foundation of China(Grant Nos.51008254,51478397)the Fundamental Research Funds for Central Universities(Grant No.2682013CX029)
文摘Two finite-element models of the CRTS II slab track are presented to simulate temperature-induced deformations of the concrete track slab with no deterioration or with a deteriorated cement asphalt mortar(CAM).One model,which considers the fully bonding interface between the slab and the CAM layer,could applied to a track that is in good condition;the other model uses cohesive zone elements to simulate the deteriorated CAM with some possible interfacial separation and slip.Utilizing both of the models,temperature-induced warp deformations of track under various temperature loads are investigated.The influence of temperature deformation on the dynamic properties of the track is analyzed based on the train-track coupled dynamics.Numerical results show that the deteriorated CAM layer can significantly increase temperature deformations of a CRTS II track slab,which would produce tiny rail irregularities.There are clear differences between the deformation shapes of the track slabs that have an inseparable mortar layer and those have a separable mortar layer.The track slab with a deteriorated mortar layer showed more open curl distortion than the track slab in good condition.The dynamical response index of the slab track is intensified to a certain level due to the temperature deformation;with an increase of the train speed,the track dynamical responses increased linearly.However,rail irregularities due to the temperature deformations are very tiny.Even if a track is exposed to extreme temperature loads and the mortar layer is deteriorated,temperature deformation can have a negligible effect on the track’s dynamical properties.
基金supported by National Natural Science Foundation of China (Grant Nos. 11301048, 11371039 and 11425103)the Fundamental Research Funds for the Central Universities
文摘Let u = (Uh,U3) be a smooth solution of the 3-D Navier-Stokes equations in R3 × [0, T). It was proved that if u3 ∈ L^∞(0,T;Bp,q-1+3/p(R3)) for 3 〈 p,q 〈 oe and uh ∈ L^∞(0, T;BMO-1(R3)) with uh(T) ∈ VMO-1(R3), then u can be extended beyond T. This result generalizes the recent result proved by Gallagher et al. (2016), which requires u ∈ L^∞(O,T;Bp,^-11+3/P(R3)). Our proof is based on a new interior regularity criterion in terms of one velocity component, which is independent of interest.
基金supported by the National Natural Science Foundation of China (Grant Nos. 90716008 and 10921202)the National Basic Research Program of China (Grant No. 2009CB724100)
文摘We derive exact near-wall and centerline constraints and apply them to improve a recently proposed LPR model for finite Reynolds number(Re) turbulent channel flows.The analysis defines two constants which are invariant with Re and suggests two more layers for incorporating boundary effects in the prediction of the mean velocity profile in the turbulent channel.These results provide corrections for the LPR mixing length model and incorrect predictions near the wall and the centerline.Moreover,we show that the analysis,together with a set of well-defined sensitive indicators,is useful for assessment of numerical simulation data.
基金supported by the National Natural Science Foundation of China(Grant Nos.11302260,11090330,11090331,11072003 and 11272222)the National Basic Research Program of China(Grant No.G2010CB832701)
文摘This paper studies the dynamic conducting crack propagation in piezoelectric solids under suddenly in-plane shear loading. Based on the integral transform methods and the Wiener-Hopf technique, the resulting mixed boundary value problem is solved. The analytical solutions of the dynamic stress intensity factor and dynamic electric displacement intensity factor for the Mode II case are derived. Furthermore, the numerical results are presented to illustrate the characteristics of the dynamic crack propagation. It is shown that the universal functions for the dynamic stress and electric displacement intensity factors vanish if the crack propagation speed equals the generalized Rayleigh speed. The results indicate that the defined electro-mechanical coupling coefficient is of great importance to the universal functions and stress intensity factor history.