High-speed and precision positioning are fundamental requirements for high-acceleration low-load mechanisms in integrated circuit (IC) packaging equipment. In this paper, we derive the transient nonlinear dynamicres...High-speed and precision positioning are fundamental requirements for high-acceleration low-load mechanisms in integrated circuit (IC) packaging equipment. In this paper, we derive the transient nonlinear dynamicresponse equations of high-acceleration mechanisms, which reveal that stiffness, frequency, damping, and driving frequency are the primary factors. Therefore, we propose a new structural optimization and velocity-planning method for the precision positioning of a high-acceleration mechanism based on optimal spatial and temporal distribution of inertial energy. For structural optimization, we first reviewed the commonly flexible multibody dynamic optimization using equivalent static loads method (ESLM), and then we selected the modified ESLM for optimal spatial distribution of inertial energy; hence, not only the stiffness but also the inertia and frequency of the real modal shapes are considered. For velocity planning, we developed a new velocity-planning method based on nonlinear dynamic-response optimization with varying motion conditions. Our method was verified on a high-acceleration die bonder. The amplitude of residual vibration could be decreased by more than 20% via structural optimization and the positioning time could be reduced by more than 40% via asymmetric variable velocity planning. This method provides an effective theoretical support for the precision positioning of high-acceleration low-load mechanisms.展开更多
SINR distribution and rate overage distribution are crucial for optimization of deployment of Ultra-dense Het Nets.Most existing literatures assume that BSs have full queues and full-buffer traffic.In fact,due to ultr...SINR distribution and rate overage distribution are crucial for optimization of deployment of Ultra-dense Het Nets.Most existing literatures assume that BSs have full queues and full-buffer traffic.In fact,due to ultra-dense deployment of small cells,traffic in small cell varies dramatically in time and space domains.Hence,it is more practical to investigate scenario with burst traffic.In this paper,we consider a two-tier non-uniform ultra-dense Het Net with burst traffic,where macro BSs are located according to Poisson Point Process(PPP),and pico BSs are located according to Poisson Hole Process(PHP).The closed-form expressions of SINR distribution and rate distribution are derived,and then validated through simulation.Our study shows that different from the result of full buffer case,the SINR distribution and rate distribution of users depend on the average transmission probabilities of BSs in burst traffic case.展开更多
This work is aimed at showing that the "band structure" of the energy distribution in solids which is a well-known model for electronic engineers and solid-state physics scientists is an efficacious description also...This work is aimed at showing that the "band structure" of the energy distribution in solids which is a well-known model for electronic engineers and solid-state physics scientists is an efficacious description also for phenomena not tied to energy neither related to microcosm. In particular, it is displayed that how the elements of the consolidated physical theories, arranged together using the "band structure", lead to a model for the distribution of speed in the universe that is essentially analogous to the distribution of energy in solids. The description is accompanied by references to the experimental data that sustain it, together with an overview of the possible development opportunities.展开更多
基金supported by the National Key Basic Research Program of China (2011CB013104)National Natural Science Foundation of China (U1134004)+2 种基金Guangdong Provincial Natural Science Foundation (2015A030312008)Science and Technology Program of Guangzhou (201510010281)Guangdong Provincial Science and Technology Plan (2013B010402014)
文摘High-speed and precision positioning are fundamental requirements for high-acceleration low-load mechanisms in integrated circuit (IC) packaging equipment. In this paper, we derive the transient nonlinear dynamicresponse equations of high-acceleration mechanisms, which reveal that stiffness, frequency, damping, and driving frequency are the primary factors. Therefore, we propose a new structural optimization and velocity-planning method for the precision positioning of a high-acceleration mechanism based on optimal spatial and temporal distribution of inertial energy. For structural optimization, we first reviewed the commonly flexible multibody dynamic optimization using equivalent static loads method (ESLM), and then we selected the modified ESLM for optimal spatial distribution of inertial energy; hence, not only the stiffness but also the inertia and frequency of the real modal shapes are considered. For velocity planning, we developed a new velocity-planning method based on nonlinear dynamic-response optimization with varying motion conditions. Our method was verified on a high-acceleration die bonder. The amplitude of residual vibration could be decreased by more than 20% via structural optimization and the positioning time could be reduced by more than 40% via asymmetric variable velocity planning. This method provides an effective theoretical support for the precision positioning of high-acceleration low-load mechanisms.
基金partially supported by National 863 Program(2014AA01A702)National Basic Research Program of China(973 Program 2012CB316004)National Natural Science Foundation(61271205,61221002 and 61201170)
文摘SINR distribution and rate overage distribution are crucial for optimization of deployment of Ultra-dense Het Nets.Most existing literatures assume that BSs have full queues and full-buffer traffic.In fact,due to ultra-dense deployment of small cells,traffic in small cell varies dramatically in time and space domains.Hence,it is more practical to investigate scenario with burst traffic.In this paper,we consider a two-tier non-uniform ultra-dense Het Net with burst traffic,where macro BSs are located according to Poisson Point Process(PPP),and pico BSs are located according to Poisson Hole Process(PHP).The closed-form expressions of SINR distribution and rate distribution are derived,and then validated through simulation.Our study shows that different from the result of full buffer case,the SINR distribution and rate distribution of users depend on the average transmission probabilities of BSs in burst traffic case.
文摘This work is aimed at showing that the "band structure" of the energy distribution in solids which is a well-known model for electronic engineers and solid-state physics scientists is an efficacious description also for phenomena not tied to energy neither related to microcosm. In particular, it is displayed that how the elements of the consolidated physical theories, arranged together using the "band structure", lead to a model for the distribution of speed in the universe that is essentially analogous to the distribution of energy in solids. The description is accompanied by references to the experimental data that sustain it, together with an overview of the possible development opportunities.