Spring snowmelt peak flow (SSPF) can cause serious damage. Precipitation as rainfall directly contributes to the SSPF and influences the characteristics of the SSPF, while temperature indirectly impacts the SSPF by ...Spring snowmelt peak flow (SSPF) can cause serious damage. Precipitation as rainfall directly contributes to the SSPF and influences the characteristics of the SSPF, while temperature indirectly impacts the SSPF by shaping snowmelt rate and determining the soil frozen state which partitions snowmelt water into surface runoff and soil infiltration water in spring. It is necessary to identify the important and significant paths of climatic factors influencing the SSPF and provide estimates of the magnitude and significance of hypothesized causal connections between climatic factors and the SSPF. This study used path analysis with a selection of five factors - the antecedent precipitation index (API), spring precipitation (SP), winter precipitation as snowfall (WS), 〈0℃ temperature accumulation in winter ([ATNI), and average 〉0℃temperature accumulation in spring (AT) - to analyze their influences on the SSPF in the Kaidu River in Xinjiang, China. The results show that {ATN}, AT and WS have a significant correlation with the SSPF, while API and SP do not show a significant correlation. AT and WS directly influence the SSPF, while as the influence of[ATN] on SSPF is indirect through WS and AT. The indirect influence of [ATN[ on SSPF through WS accounts for 69% of the total influence of [ATN] on SSPF. Compared to the multiple linear regression method, path analysis provides additional valuable information, including influencing paths from independent variables to the dependent variable as well as direct and indirect impacts of external variables on the internal variable. This information can help improve the description of snow melt and spring runoff in hydrologic models as well as the planning and management of water resources.展开更多
Dynamic elastic parameters of coal are closely linked to crack characteristics and are lithology indicators in seismic exploration. This experimental study measured ultrasonic wave velocity of coal samples considering...Dynamic elastic parameters of coal are closely linked to crack characteristics and are lithology indicators in seismic exploration. This experimental study measured ultrasonic wave velocity of coal samples considering both parallel(90°) and perpendicular(0°) to bedding planes, and then calculated the dynamic elastic parameters(Edand ld) and their anisotropy values(AEdand Ald). The variations of Edand ld,as well as AEdand Aldwere analyzed under various confining stresses. The results show that: Firstly, a critical confining pressure exists, and significant variation in the parameters can be seen below this point and weak variation appears above it. Secondly, a positive correlation exists between Edand the square of P-wave velocity(VP2), and between AEdand the P-wave velocity anisotropy(AEP) as well; however, there is no clear correlation between ldand P-wave velocity(VP). Thirdly, according to the major controlling factors of anisotropy, the coal samples with different Edand ldas well as AEdand Aldcan be divided into two types: one is mainly controlled by bedding and cracks and the other one is mainly controlled by differences of mineral compositions in directions. Consequently, this study can provide theoretical basis for future research on the dynamic elastic parameters and anisotropy of coal.展开更多
The melt filling difficulty in micro cavity is one of the main challenges for micro-injection molding (MIM). An approach employing ultrasound in MIM was proposed. The approach was extensively studied through experimen...The melt filling difficulty in micro cavity is one of the main challenges for micro-injection molding (MIM). An approach employing ultrasound in MIM was proposed. The approach was extensively studied through experiments with a home-made experimental ultrasonic plastification device. The results of the experiments show that polymer ultrasonic plastification speed increases with ultrasonic supply voltage and plastification pressure. When the ultrasonic supply voltage is 200 V and the plastification pressure is 2.0 MPa, the polymer ultrasonic plastification speed reaches the maximum value of 0.111 1 g/s. The results also indicate that the ultrasonic cavitation effect is the most significant effect of all the three effects during polymer ultrasonic plastification process.展开更多
Abies georgei var. smithii is a dominant species playing an important role in protecting biodiversity and sustaining the forestry ecosystems in Southeastern Tibetan Plateau. Stem sap flows of five different diameters ...Abies georgei var. smithii is a dominant species playing an important role in protecting biodiversity and sustaining the forestry ecosystems in Southeastern Tibetan Plateau. Stem sap flows of five different diameters at the breast height(DBH) A. georgei var. smithii samples were monitored continuously with the thermal dissipation probe for the entire growing period in order to understand the water transportation mechanism and the effects of environmental factors on its transpiration and growth. Relative environment factors, temperature and humidity of air, photosynthetically active radiation, rainfall, and wind speed, soil moisture, etc. were measured by the automatic weather stations. Diurnal and seasonal variations in sap flow rate with the different stem diameters and their correlations with meteorological factors were analyzed. The diurnal change in sap flow velocity showed a single-peak curve at the daily time scale, whereas a lower sap flow velocity can be observed in the largest DBH sample tree at night. The maximum average velocity was observed in August, whereas the minimum velocity was observed in January, and a large amount of water evaporated in summer owing to the higher sap flow velocity. In addition, sap flow velocity was closely related to changes in the micrometeorological factors, with average sap flow velocity showing significant linear correlations with air temperature, photosynthetically active radiation, rainfall, and vapor pressure deficit of air and soil moisture. Therefore, some measures, improving the light and temperature conditions, should be taken for protecting A. georgei var. smithii population in the Tibetan Plateau.展开更多
A more efficient mine ventilation system, the ventilation-on-demand (VOD) system, has been proposed and tested in Canadian mines recently. In order to supply the required air volumes to the production areas of a min...A more efficient mine ventilation system, the ventilation-on-demand (VOD) system, has been proposed and tested in Canadian mines recently. In order to supply the required air volumes to the production areas of a mine, operators need to know the cause and effect of any changes requested from the VOD system. The sensitivity analysis is developed through generating a cause and effect matrix of sensitivity factors on given parameter changes in a ventilation system. This new utility, which was incorporated in the 3D-CANVENT mine ventilation simulator, is able to predict the airflow distributions in a ventilation network when underground conditions and ventilation controls are changed. For a primary ventilation system, the software can determine the optimal operating speed of the main fans to satisfy the airflow requirements in underground workings without necessarily using booster fans and regulators locally. An optimized fan operating speed time-table would assure variable demand-based fresh air delivery to the production areas effectively, while generating significant savings in energy consumption and operating cost.展开更多
A silicone oil emulsion with 60% of solid content was prepared with methyl silicone oil used as the main material by means of the emulsifier-in-oil method.The influence of emulsification conditions on the droplet diam...A silicone oil emulsion with 60% of solid content was prepared with methyl silicone oil used as the main material by means of the emulsifier-in-oil method.The influence of emulsification conditions on the droplet diameter of silicone oil emulsion was discussed.The experimental results showed that the emulsification method,including the quantity of the emulsifier,the time and temperature of emulsification,the emulsifying water dosage,and the stirring speed,had significant impact on the droplet size.The optimal conditions were identified to achieve a smallest droplet diameter of the emulsion at an emulsifier dosage of 6%,an emulsification temperature of 70 ℃,an emulsification time of 30 min,and a stirring speed of 1100 r/min,with water added in two portions at a ratio of 1:1.The high-solid content silicone oil emulsion with a mean droplet diameter of 2.731 μm was prepared under these conditions that could ensure absence of stratification and floating oil under centrifuging at a speed of 3000 r/min for 30 min.展开更多
AIM: To evaluate the outcome of sub-centimeter-sized nodules (SCSNs) detected during surveillance for hepatocellular carcinoma (HCC) in patients at risk. METHODS: We retrospectively analyzed a total of 142 patients wi...AIM: To evaluate the outcome of sub-centimeter-sized nodules (SCSNs) detected during surveillance for hepatocellular carcinoma (HCC) in patients at risk. METHODS: We retrospectively analyzed a total of 142 patients with liver cirrhosis or chronic hepatitis B or C without a prior history of HCC in whom a SCSN was detected during HCC surveillance. We calculated the rate of HCC development from SCSNs in the study population and analyzed the differences in the baseline clinical characteristics and imaging features between the patients with SCSNs that eventually developed into HCC and patients with SCSNs that did not develop into HCC.RESULTS: During 667 person-years of follow-up, HCC developed in 33 patients. The calculated HCC development rate was 4.9% per year. The cumulative one-, two-, three- and five-year HCC development rates were 5.6%, 10.6%, 14.1% and 20.4%, respectively. Upon baseline comparison, the HCC group was older (54.4 ± 8.3 years vs 48.9 ± 9.4 years; P = 0.003) and had lower albumin levels (3.56 ± 0.58 g/dL vs 3.84 ± 0.55 g/dL; P = 0.012) and higher baseline alpha-fetoprotein (AFP) levels (8.5 ng/mL vs 5.4 ng/mL; P = 0.035) compared to the non-HCC group. Nodule pattern and initial radiologic diagnosis also differed between the two groups. Multivariate analysis revealed that age [P = 0.012, odds ratio (OR) =1.075, 95% confidence interval (CI) =1.016-1.137], sex (P = 0.009, OR = 3.969, 95% CI: 1.403-11.226), and baseline AFP level (P = 0.024, OR = 1.039, 95% CI: 1.005-1.073) were independent risk factors for developing HCC. CONCLUSION: The overall risk of HCC development in patients with SCSNs is similar to that in liver cirrhosis patients. Patients with these risk factors need to be closely monitored during follow-up.展开更多
Background: Research surrounding the steeplechase is scarce, with most research focusing primarily on how biomechanical factors relate to maintaining running speed while crossing barriers. One area that has not been ...Background: Research surrounding the steeplechase is scarce, with most research focusing primarily on how biomechanical factors relate to maintaining running speed while crossing barriers. One area that has not been well explored is the relationship between biomechanical factors and hurdling economy. The purpose of this study was to investigate how pel:formance times and biomechanical variables relate to hurdling economy during the steeplechase. Methods: This was accomplished by measuring running economy of collegiate and professional steeplechasers while rmming with and without hurdles. Biomechanical measures of approach velocity, takeoff distance, clearance height, and lead knee extension while hurdling, as well as steeplechase performance times were correlated to a ratio of running economy with and without hurdles. Results: While oxygen uptake was 2.6% greater for the laps requiring five barriers, there was no correlation between steeplechase performance time and the ratio of running economy during the hurdle and non-hurdle laps. Results also indicated no correlation between the aforementioned biomechanical variables and ratio of running economy during the hurdle and non-hurdle laps. Conclusion: Increasing approach velocity did not negatively affect running economy. Increased approach velocity is a benefit for maintenance of race pace, but does not hurt economy of movement.展开更多
基金financially supported by the Project of State Key Basic R & D Program of China (973 Program, Grant No. 2010CB951002)the key deployment project of Chinese Academy of Sciences (Grant No. KZZD-EW-12-2)Chinese Academy of Sciences Visiting Professorship for Senior International Scientists (Grant No. 2011T2Z40)
文摘Spring snowmelt peak flow (SSPF) can cause serious damage. Precipitation as rainfall directly contributes to the SSPF and influences the characteristics of the SSPF, while temperature indirectly impacts the SSPF by shaping snowmelt rate and determining the soil frozen state which partitions snowmelt water into surface runoff and soil infiltration water in spring. It is necessary to identify the important and significant paths of climatic factors influencing the SSPF and provide estimates of the magnitude and significance of hypothesized causal connections between climatic factors and the SSPF. This study used path analysis with a selection of five factors - the antecedent precipitation index (API), spring precipitation (SP), winter precipitation as snowfall (WS), 〈0℃ temperature accumulation in winter ([ATNI), and average 〉0℃temperature accumulation in spring (AT) - to analyze their influences on the SSPF in the Kaidu River in Xinjiang, China. The results show that {ATN}, AT and WS have a significant correlation with the SSPF, while API and SP do not show a significant correlation. AT and WS directly influence the SSPF, while as the influence of[ATN] on SSPF is indirect through WS and AT. The indirect influence of [ATN[ on SSPF through WS accounts for 69% of the total influence of [ATN] on SSPF. Compared to the multiple linear regression method, path analysis provides additional valuable information, including influencing paths from independent variables to the dependent variable as well as direct and indirect impacts of external variables on the internal variable. This information can help improve the description of snow melt and spring runoff in hydrologic models as well as the planning and management of water resources.
基金provided by the National Key Basic Research Development Program(No.2009CB219603)the Jiangsu Natural Science Fund Project(No.BK20130201)the Jiangsu Graduate Student Innovation Training Project(No.KYLX_1399)
文摘Dynamic elastic parameters of coal are closely linked to crack characteristics and are lithology indicators in seismic exploration. This experimental study measured ultrasonic wave velocity of coal samples considering both parallel(90°) and perpendicular(0°) to bedding planes, and then calculated the dynamic elastic parameters(Edand ld) and their anisotropy values(AEdand Ald). The variations of Edand ld,as well as AEdand Aldwere analyzed under various confining stresses. The results show that: Firstly, a critical confining pressure exists, and significant variation in the parameters can be seen below this point and weak variation appears above it. Secondly, a positive correlation exists between Edand the square of P-wave velocity(VP2), and between AEdand the P-wave velocity anisotropy(AEP) as well; however, there is no clear correlation between ldand P-wave velocity(VP). Thirdly, according to the major controlling factors of anisotropy, the coal samples with different Edand ldas well as AEdand Aldcan be divided into two types: one is mainly controlled by bedding and cracks and the other one is mainly controlled by differences of mineral compositions in directions. Consequently, this study can provide theoretical basis for future research on the dynamic elastic parameters and anisotropy of coal.
基金Project(107086)supported by the Key Program of Chinese Ministry of EducationProject(2009)supported by the Graduate Degree Thesis Innovation Foundation of Central South University,China
文摘The melt filling difficulty in micro cavity is one of the main challenges for micro-injection molding (MIM). An approach employing ultrasound in MIM was proposed. The approach was extensively studied through experiments with a home-made experimental ultrasonic plastification device. The results of the experiments show that polymer ultrasonic plastification speed increases with ultrasonic supply voltage and plastification pressure. When the ultrasonic supply voltage is 200 V and the plastification pressure is 2.0 MPa, the polymer ultrasonic plastification speed reaches the maximum value of 0.111 1 g/s. The results also indicate that the ultrasonic cavitation effect is the most significant effect of all the three effects during polymer ultrasonic plastification process.
基金supported by the Tibetan Natural Scientific Foundation of China (13-28)Tibetan Linzhi National Forest Ecological Research Station (2012-LYPT-DW-016)+1 种基金Promotion Plan of Plateau Basic Ecological Academic Team Abilitysupported by CFERN&GENE Award funds on ecological paper
文摘Abies georgei var. smithii is a dominant species playing an important role in protecting biodiversity and sustaining the forestry ecosystems in Southeastern Tibetan Plateau. Stem sap flows of five different diameters at the breast height(DBH) A. georgei var. smithii samples were monitored continuously with the thermal dissipation probe for the entire growing period in order to understand the water transportation mechanism and the effects of environmental factors on its transpiration and growth. Relative environment factors, temperature and humidity of air, photosynthetically active radiation, rainfall, and wind speed, soil moisture, etc. were measured by the automatic weather stations. Diurnal and seasonal variations in sap flow rate with the different stem diameters and their correlations with meteorological factors were analyzed. The diurnal change in sap flow velocity showed a single-peak curve at the daily time scale, whereas a lower sap flow velocity can be observed in the largest DBH sample tree at night. The maximum average velocity was observed in August, whereas the minimum velocity was observed in January, and a large amount of water evaporated in summer owing to the higher sap flow velocity. In addition, sap flow velocity was closely related to changes in the micrometeorological factors, with average sap flow velocity showing significant linear correlations with air temperature, photosynthetically active radiation, rainfall, and vapor pressure deficit of air and soil moisture. Therefore, some measures, improving the light and temperature conditions, should be taken for protecting A. georgei var. smithii population in the Tibetan Plateau.
文摘A more efficient mine ventilation system, the ventilation-on-demand (VOD) system, has been proposed and tested in Canadian mines recently. In order to supply the required air volumes to the production areas of a mine, operators need to know the cause and effect of any changes requested from the VOD system. The sensitivity analysis is developed through generating a cause and effect matrix of sensitivity factors on given parameter changes in a ventilation system. This new utility, which was incorporated in the 3D-CANVENT mine ventilation simulator, is able to predict the airflow distributions in a ventilation network when underground conditions and ventilation controls are changed. For a primary ventilation system, the software can determine the optimal operating speed of the main fans to satisfy the airflow requirements in underground workings without necessarily using booster fans and regulators locally. An optimized fan operating speed time-table would assure variable demand-based fresh air delivery to the production areas effectively, while generating significant savings in energy consumption and operating cost.
文摘A silicone oil emulsion with 60% of solid content was prepared with methyl silicone oil used as the main material by means of the emulsifier-in-oil method.The influence of emulsification conditions on the droplet diameter of silicone oil emulsion was discussed.The experimental results showed that the emulsification method,including the quantity of the emulsifier,the time and temperature of emulsification,the emulsifying water dosage,and the stirring speed,had significant impact on the droplet size.The optimal conditions were identified to achieve a smallest droplet diameter of the emulsion at an emulsifier dosage of 6%,an emulsification temperature of 70 ℃,an emulsification time of 30 min,and a stirring speed of 1100 r/min,with water added in two portions at a ratio of 1:1.The high-solid content silicone oil emulsion with a mean droplet diameter of 2.731 μm was prepared under these conditions that could ensure absence of stratification and floating oil under centrifuging at a speed of 3000 r/min for 30 min.
文摘AIM: To evaluate the outcome of sub-centimeter-sized nodules (SCSNs) detected during surveillance for hepatocellular carcinoma (HCC) in patients at risk. METHODS: We retrospectively analyzed a total of 142 patients with liver cirrhosis or chronic hepatitis B or C without a prior history of HCC in whom a SCSN was detected during HCC surveillance. We calculated the rate of HCC development from SCSNs in the study population and analyzed the differences in the baseline clinical characteristics and imaging features between the patients with SCSNs that eventually developed into HCC and patients with SCSNs that did not develop into HCC.RESULTS: During 667 person-years of follow-up, HCC developed in 33 patients. The calculated HCC development rate was 4.9% per year. The cumulative one-, two-, three- and five-year HCC development rates were 5.6%, 10.6%, 14.1% and 20.4%, respectively. Upon baseline comparison, the HCC group was older (54.4 ± 8.3 years vs 48.9 ± 9.4 years; P = 0.003) and had lower albumin levels (3.56 ± 0.58 g/dL vs 3.84 ± 0.55 g/dL; P = 0.012) and higher baseline alpha-fetoprotein (AFP) levels (8.5 ng/mL vs 5.4 ng/mL; P = 0.035) compared to the non-HCC group. Nodule pattern and initial radiologic diagnosis also differed between the two groups. Multivariate analysis revealed that age [P = 0.012, odds ratio (OR) =1.075, 95% confidence interval (CI) =1.016-1.137], sex (P = 0.009, OR = 3.969, 95% CI: 1.403-11.226), and baseline AFP level (P = 0.024, OR = 1.039, 95% CI: 1.005-1.073) were independent risk factors for developing HCC. CONCLUSION: The overall risk of HCC development in patients with SCSNs is similar to that in liver cirrhosis patients. Patients with these risk factors need to be closely monitored during follow-up.
文摘Background: Research surrounding the steeplechase is scarce, with most research focusing primarily on how biomechanical factors relate to maintaining running speed while crossing barriers. One area that has not been well explored is the relationship between biomechanical factors and hurdling economy. The purpose of this study was to investigate how pel:formance times and biomechanical variables relate to hurdling economy during the steeplechase. Methods: This was accomplished by measuring running economy of collegiate and professional steeplechasers while rmming with and without hurdles. Biomechanical measures of approach velocity, takeoff distance, clearance height, and lead knee extension while hurdling, as well as steeplechase performance times were correlated to a ratio of running economy with and without hurdles. Results: While oxygen uptake was 2.6% greater for the laps requiring five barriers, there was no correlation between steeplechase performance time and the ratio of running economy during the hurdle and non-hurdle laps. Results also indicated no correlation between the aforementioned biomechanical variables and ratio of running economy during the hurdle and non-hurdle laps. Conclusion: Increasing approach velocity did not negatively affect running economy. Increased approach velocity is a benefit for maintenance of race pace, but does not hurt economy of movement.