在用户行为无法预知的实际计步应用中,如何保持计步算法的准确性和稳定性是一个极具挑战的问题。传统的计步算法利用阈值设定和峰值检测,并不能解决计步算法的普适性和稳定性。针对上述问题,提出了基于加速度差分作为特征的有限状态机(a...在用户行为无法预知的实际计步应用中,如何保持计步算法的准确性和稳定性是一个极具挑战的问题。传统的计步算法利用阈值设定和峰值检测,并不能解决计步算法的普适性和稳定性。针对上述问题,提出了基于加速度差分作为特征的有限状态机(acceleration differential based on finite state machine,AD-FSM)计步算法。该算法将原始加速度取平方和,并通过卡尔曼滤波去除噪声干扰,最后使用加速度差分有限状态机实现计步检测。实验结果表明,该算法在正常和干扰情况下能够提供精确的计步结果,误差分别为1.12%、4.00%,验证了该计步算法在降低状态机复杂度的同时具有较强的稳定性和鲁棒性,更能适应复杂的应用场景。展开更多
To improve the efficiency of CNC machining, assumptive transit circular arc is used to contour two adjacent moves together on the comer to make smooth paths. The radios of transit circular arc can be adjusted with con...To improve the efficiency of CNC machining, assumptive transit circular arc is used to contour two adjacent moves together on the comer to make smooth paths. The radios of transit circular arc can be adjusted with contour accuracy, and the feed rate on the corner can be controlled through limiting the maximum feed rate of transit circular arc segment. A look-ahead algorithm for a series of moves is proposed for speed adjustment in advance, which avoids the occurrence of overload of cutting tool on the comer and reduces the servo track error of parts on the corner or of circular arc move. Equivalent trapezoidal velocity profile is used to analyze the speed of S-curve velocity profile and work out its accurate interpolation, which overcomes the disadvantage of looking up table to calculate feed rate approximately, hence high accuracy and fine surface quality can be obtained while the machining speed is high. The proposed methods can meet the requirements of real-time analysis of high-speed machining. The presented algorithm is effective and has been adopted by CNC system of newly developed high-speed milling machine.展开更多
Based on non-Darcian flow law described by exponent and threshold gradient within a double-layered soil, the classic theory of one-dimensional consolidation of double-layered soil was modified to consider the change o...Based on non-Darcian flow law described by exponent and threshold gradient within a double-layered soil, the classic theory of one-dimensional consolidation of double-layered soil was modified to consider the change of vertical total stress with depth and time together. Because of the complexity of governing equations, the numerical solutions were obtained in detail by finite difference method. Then, the numerical solutions were compared with the analytical solutions in condition that non-Darcian flow law was degenerated to Dary's law, and the comparison results show that numerical solutions are reliable. Finally, consolidation behavior of double-layered soil with different parameters was analyzed, and the results show that the consolidation rate of double-layered soil decreases with increasing the value of exponent and threshold of non-Darcian flow, and the exponent and threshold gradient of the first soil layer greatly influence the consolidation rate of double-layered soil. The larger the ratio of the equivalent water head of external load to the total thickness of double-layered soil, the larger the rate of the consolidation, and the similitude relationship in classical consolidation theory of double-layered soil is not satisfied. The other consolidation behavior of double-layered soil with non-Darcian flow is the same as that with Darcy's law.展开更多
We present a highly efficient lattice Boltzmann model for simulating compressible flows. This model is based on the combination of an appropriate finite difference scheme, a 16-discrete-velocity model [Kataoka and Tsu...We present a highly efficient lattice Boltzmann model for simulating compressible flows. This model is based on the combination of an appropriate finite difference scheme, a 16-discrete-velocity model [Kataoka and Tsutahara, Phys. Rev. E 69 (2004) 035701(R)] and reasonable dispersion and dissipation terms. The dispersion term effectively reduces the oscillation at the discontinuity and enhances numerical precision. The dissipation term makes the new model more easily meet with the yon Neumann stability condition. This model works for both high-speed and low-speed flows with arbitrary specific-heat-ratio. With the new model simulation results for the well-known benchmark problems get a high accuracy compared with the analytic or experimental ones. The used benchmark tests include (i) Shock tubes such as the Sod, Lax, Sjogreen, Colella explosion wave, and collision of two strong shocks, (ii) Regular and Mach shock reflections, and (iii) Shock wave reaction on cylindrical bubble problems. With a more realistic equation of state or free-energy functional, the new model has the potential tostudy the complex procedure of shock wave reaction on porous materials.展开更多
Background: Lower body positive pressure (LBPP) treadmills can be used in rehabilitation programs and/or to supplement tun mileage in healthy runners by reducing the effective body weight and impact associated with...Background: Lower body positive pressure (LBPP) treadmills can be used in rehabilitation programs and/or to supplement tun mileage in healthy runners by reducing the effective body weight and impact associated with running. The purpose of this study is to determine if body weight support influences the stride length (SL)-velocity as well as leg impact acceleration relationship during running. Methods: Subjects (n = 10, 21.4 ± 2.0 years, 72.4 ± 10.3 kg, 1.76 ± 0.09 m) completed 16 run conditions consisting of specific body weight support and velocity combinations. Velocities tested were 100%, 110%, 120%, and 130% of the preferred velocity (2.75± 0.36 m/s). Body weight support conditions consisted of 0, 60%,5, 70%, and 80% body weight support. SL and leg impact accelerations were determined using a light-weight accelerometer mounted on the surface of the anterior-distal aspect of the tibia. A 4 × 4 (velocity x body weight support) repeated measures ANOVA was used for each dependent variable (a = 0.05). Results: Neither SL nor leg impact acceleration were influenced by the interaction of body weight support and velocity (p 〉 0.05). SL was least during no body weight support (p 〈 0.05) but not different between 60%, 70%, and 80% support (p 〉 0.05). Leg impact acceleration was greatest during no body weight support (p 〈 0.05) but not different between 60%, 70%, and 80% support (p 〉 0.05). SL and leg impact accelerations increased with velocity regardless of support (p 〈 0.05). Conclusion: The relationships between SL and leg impact accelerations with velocity were not influenced by body weight support.展开更多
Under the micro-scale condition,feature size of the channel is one of the main factors influencing the fluid flow characteristics. In printing process,ink thickness in the extrusion zone formed by two ink rollers may ...Under the micro-scale condition,feature size of the channel is one of the main factors influencing the fluid flow characteristics. In printing process,ink thickness in the extrusion zone formed by two ink rollers may reach micron scale. Compared with macroscopic fluid,the velocity field and the pressure field of fluid may change when the feature size of fluid channel reaches micron scale. In order to control printing quality,it is necessary to research the influence of feature size on ink flow characteristics in micro scale. This paper analyzes it in theory,and then numerical simulation of an ink flow model with different feature sizes is carried out in no slip condition. The influence of the feature size on the ink flow characteristics and the wall shear force are obtained. Besides,the ink flow model with different feature sizes is simulated numerically in slip condition,and the influence of feature size on ink flow characteristics is obtained. Finally,by comparing and analyzing the above results,it can be concluded that both the ink velocity and pressure at the inlet of the extrusion zone are inversely proportional to the feature sizes whether in slip condition or not. And the ink velocity in slip condition is larger than that without slip,the pressure at the inlet of the extrusion zone is less than that in no slip condition. Within the micro-scale range,the ink velocity difference between the two conditions cannot be ignored. Therefore,it is necessary to consider slip when analyzing the influence of feature size of micro-scale channel on ink flow characteristics.展开更多
To investigate the feasibility and effectiveness of the designed control system used for driving and steering of an electric scooter, a model of differential steering was developed. The function of electronic differen...To investigate the feasibility and effectiveness of the designed control system used for driving and steering of an electric scooter, a model of differential steering was developed. The function of electronic differential steering was realized by controlling the speed of right or left wheel and the corresponding speed difference. The control system was simulated with MATLAB/SIMUL1NK and ADAMS. It is found that the motor load torque is proportional to the tire vertical force, so the adhesive capacity is met. The electric scooter can operate stably on the slope road at a speed of more than 1.5 m/s and turn stably at yawing velocities of 10° and 90°per second.展开更多
Supercavitating flow around a slender symmetric wedge moving at variable velocity in static fluid has been studied. Singular integral equation for the flow has been founded through distributing the sources and sinks o...Supercavitating flow around a slender symmetric wedge moving at variable velocity in static fluid has been studied. Singular integral equation for the flow has been founded through distributing the sources and sinks on the symmetrical axis. The supereavity length at each moment is determined by solving the singular integral equation with finite difference method. The supercavity shape at each moment is obtained by solving the partial differential equation with variable coefficient. For the case that the wedge takes the impulse and uniformly variable motion, numerical results of time history of the supercavity length and shape are presented. The calculated results indicate that the shape and the length of the supercavity vary in a similar way to the case that the wedge takes variable motion, and there is a time lag in unsteady supercavitating flow induced by the variation of wedge velocity.展开更多
A new technique for the analysis of the three-dimensional collapse failure mechanism and the ground surface settlements for the large-diameter shield tunnels were presented.The technique is based on a velocity field m...A new technique for the analysis of the three-dimensional collapse failure mechanism and the ground surface settlements for the large-diameter shield tunnels were presented.The technique is based on a velocity field model using more different truncated solid conical blocks to clarify the multiblock failure mechanism.Furthermore,the shape of blocks between the failure surface and the tunnel face was considered as an entire circle,and the supporting pressure was assumed as non-uniform distribution on the tunnel face and increased with the tunnel embedded depth.The ground surface settlements and failure mechanism above large-diameter shield tunnels were also investigated under different supporting pressures by the finite difference method.展开更多
The theoretical model of axial ultrasonic vibration grinding force is built on the basis of a mathematical model of cutting deforming force deduced from the assumptions of thickness of the undeformed debris under Rayl...The theoretical model of axial ultrasonic vibration grinding force is built on the basis of a mathematical model of cutting deforming force deduced from the assumptions of thickness of the undeformed debris under Rayleigh distribution and a mathematical model of friction based on the theoretical analysis of relative sliding velocity of abrasive and workpiece. Then, the coefficients of the ultrasonic vibration grinding force model are calculated through analysis of nonlinear regression of the theoretical model by using MATLAB, and the law of influence of grinding depth, workpiece speed, frequency and amplitude of the mill on the grinding force is summarized after applying the model to analyze the ultrasonic grinding force. The result of the above-mentioned law shows that the grinding force decreases as frequency and amplitude increase, while increases as grinding depth and workpiece speed increase; the maximum relative error of prediction and experimental values of the normal grinding force is 11.47% and its average relative error is 5.41%; the maximum relative error of the tangential grinding force is 10.14% and its average relative error is 4.29%. The result of employing regression equation to predict ultrasonic grinding force approximates to the experimental data, therefore the accuracy and reliability of the model is verified.展开更多
A new type of differential double-stator swing hydraulic motor, based on double stator structure, was introduced. Compared with the traditional swing hydraulic motors, it could provide various kinds of rotational spee...A new type of differential double-stator swing hydraulic motor, based on double stator structure, was introduced. Compared with the traditional swing hydraulic motors, it could provide various kinds of rotational speeds and torques under the same conditions of input flow rate and pressure. The operating prindple and graphic symbols were described. The output speed and torque characters in multifarious connection modes were analyzed through single-acting differential double-stator swing hydraulic multi-motors. Then the differential connection modes and differential principles of differential double-stator swing hydraulic multi-motors were stated. Furthermore, the output speed and torque characters of double- acting and triple-acting ones in multifarious connection modes were gotten. The interaction between output torque and the displacement ratio was studied. Finally, the internal leakage that influenced the volumetric efficiency was researched. The theoretical and experimental researches show that the differential double-stutor swing hydraulic multi-motors can provide various kinds of rotational speeds and torques. Predictably, this new kind of swing hydraulic multi-motors has broad application prospects in machine tool equipments, engineering machineries, and simulation turntables.展开更多
Dynamic characteristics and tracking precision are studied in the photoelectric tracking system and a linear active disturbance rejection control( LADRC) scheme is proposed for position loop. A current and speed contr...Dynamic characteristics and tracking precision are studied in the photoelectric tracking system and a linear active disturbance rejection control( LADRC) scheme is proposed for position loop. A current and speed controller is designed by a transfer function model,which is obtained by adaptive differential evolution. Model error,friction and nonlinear factor existing in position loop are treated as ‘disturbance',which is estimated and compensated by generalized proportional integral( GPI)observer. Comparative results are provided to demonstrate the remarkable performance of the proposed method. It turns out that the proposed scheme is successful and has superior features,such as quick dynamic response,low overshoot and high tracking precision. Furthermore,with the proposed method,friction is suppressed effectively.展开更多
文摘在用户行为无法预知的实际计步应用中,如何保持计步算法的准确性和稳定性是一个极具挑战的问题。传统的计步算法利用阈值设定和峰值检测,并不能解决计步算法的普适性和稳定性。针对上述问题,提出了基于加速度差分作为特征的有限状态机(acceleration differential based on finite state machine,AD-FSM)计步算法。该算法将原始加速度取平方和,并通过卡尔曼滤波去除噪声干扰,最后使用加速度差分有限状态机实现计步检测。实验结果表明,该算法在正常和干扰情况下能够提供精确的计步结果,误差分别为1.12%、4.00%,验证了该计步算法在降低状态机复杂度的同时具有较强的稳定性和鲁棒性,更能适应复杂的应用场景。
基金Sponsored by the National Excellent Young Teacher Encouragement Plan of China
文摘To improve the efficiency of CNC machining, assumptive transit circular arc is used to contour two adjacent moves together on the comer to make smooth paths. The radios of transit circular arc can be adjusted with contour accuracy, and the feed rate on the corner can be controlled through limiting the maximum feed rate of transit circular arc segment. A look-ahead algorithm for a series of moves is proposed for speed adjustment in advance, which avoids the occurrence of overload of cutting tool on the comer and reduces the servo track error of parts on the corner or of circular arc move. Equivalent trapezoidal velocity profile is used to analyze the speed of S-curve velocity profile and work out its accurate interpolation, which overcomes the disadvantage of looking up table to calculate feed rate approximately, hence high accuracy and fine surface quality can be obtained while the machining speed is high. The proposed methods can meet the requirements of real-time analysis of high-speed machining. The presented algorithm is effective and has been adopted by CNC system of newly developed high-speed milling machine.
基金Projects(50878191,51109092)supported by the National Natural Science Foundation of China
文摘Based on non-Darcian flow law described by exponent and threshold gradient within a double-layered soil, the classic theory of one-dimensional consolidation of double-layered soil was modified to consider the change of vertical total stress with depth and time together. Because of the complexity of governing equations, the numerical solutions were obtained in detail by finite difference method. Then, the numerical solutions were compared with the analytical solutions in condition that non-Darcian flow law was degenerated to Dary's law, and the comparison results show that numerical solutions are reliable. Finally, consolidation behavior of double-layered soil with different parameters was analyzed, and the results show that the consolidation rate of double-layered soil decreases with increasing the value of exponent and threshold of non-Darcian flow, and the exponent and threshold gradient of the first soil layer greatly influence the consolidation rate of double-layered soil. The larger the ratio of the equivalent water head of external load to the total thickness of double-layered soil, the larger the rate of the consolidation, and the similitude relationship in classical consolidation theory of double-layered soil is not satisfied. The other consolidation behavior of double-layered soil with non-Darcian flow is the same as that with Darcy's law.
基金Supported by the Science Foundations of LCP and CAEP under Grant Nos.2009A0102005 and 2009B0101012the National Basic Research Program (973 Program) under Grant No.2007CB815105the National Natural Science Foundation under Grant Nos.10775018,10702010,and 10775088
文摘We present a highly efficient lattice Boltzmann model for simulating compressible flows. This model is based on the combination of an appropriate finite difference scheme, a 16-discrete-velocity model [Kataoka and Tsutahara, Phys. Rev. E 69 (2004) 035701(R)] and reasonable dispersion and dissipation terms. The dispersion term effectively reduces the oscillation at the discontinuity and enhances numerical precision. The dissipation term makes the new model more easily meet with the yon Neumann stability condition. This model works for both high-speed and low-speed flows with arbitrary specific-heat-ratio. With the new model simulation results for the well-known benchmark problems get a high accuracy compared with the analytic or experimental ones. The used benchmark tests include (i) Shock tubes such as the Sod, Lax, Sjogreen, Colella explosion wave, and collision of two strong shocks, (ii) Regular and Mach shock reflections, and (iii) Shock wave reaction on cylindrical bubble problems. With a more realistic equation of state or free-energy functional, the new model has the potential tostudy the complex procedure of shock wave reaction on porous materials.
文摘Background: Lower body positive pressure (LBPP) treadmills can be used in rehabilitation programs and/or to supplement tun mileage in healthy runners by reducing the effective body weight and impact associated with running. The purpose of this study is to determine if body weight support influences the stride length (SL)-velocity as well as leg impact acceleration relationship during running. Methods: Subjects (n = 10, 21.4 ± 2.0 years, 72.4 ± 10.3 kg, 1.76 ± 0.09 m) completed 16 run conditions consisting of specific body weight support and velocity combinations. Velocities tested were 100%, 110%, 120%, and 130% of the preferred velocity (2.75± 0.36 m/s). Body weight support conditions consisted of 0, 60%,5, 70%, and 80% body weight support. SL and leg impact accelerations were determined using a light-weight accelerometer mounted on the surface of the anterior-distal aspect of the tibia. A 4 × 4 (velocity x body weight support) repeated measures ANOVA was used for each dependent variable (a = 0.05). Results: Neither SL nor leg impact acceleration were influenced by the interaction of body weight support and velocity (p 〉 0.05). SL was least during no body weight support (p 〈 0.05) but not different between 60%, 70%, and 80% support (p 〉 0.05). Leg impact acceleration was greatest during no body weight support (p 〈 0.05) but not different between 60%, 70%, and 80% support (p 〉 0.05). SL and leg impact accelerations increased with velocity regardless of support (p 〈 0.05). Conclusion: The relationships between SL and leg impact accelerations with velocity were not influenced by body weight support.
基金Supported by the National Natural Science Foundation of China(No.51675010)the Science and Technology Plan Project of Beijing Education Commission(No.KM201710005015)
文摘Under the micro-scale condition,feature size of the channel is one of the main factors influencing the fluid flow characteristics. In printing process,ink thickness in the extrusion zone formed by two ink rollers may reach micron scale. Compared with macroscopic fluid,the velocity field and the pressure field of fluid may change when the feature size of fluid channel reaches micron scale. In order to control printing quality,it is necessary to research the influence of feature size on ink flow characteristics in micro scale. This paper analyzes it in theory,and then numerical simulation of an ink flow model with different feature sizes is carried out in no slip condition. The influence of the feature size on the ink flow characteristics and the wall shear force are obtained. Besides,the ink flow model with different feature sizes is simulated numerically in slip condition,and the influence of feature size on ink flow characteristics is obtained. Finally,by comparing and analyzing the above results,it can be concluded that both the ink velocity and pressure at the inlet of the extrusion zone are inversely proportional to the feature sizes whether in slip condition or not. And the ink velocity in slip condition is larger than that without slip,the pressure at the inlet of the extrusion zone is less than that in no slip condition. Within the micro-scale range,the ink velocity difference between the two conditions cannot be ignored. Therefore,it is necessary to consider slip when analyzing the influence of feature size of micro-scale channel on ink flow characteristics.
基金Supported by Scientific and Technological Project of Chongqing (CSTC2009AC6051)
文摘To investigate the feasibility and effectiveness of the designed control system used for driving and steering of an electric scooter, a model of differential steering was developed. The function of electronic differential steering was realized by controlling the speed of right or left wheel and the corresponding speed difference. The control system was simulated with MATLAB/SIMUL1NK and ADAMS. It is found that the motor load torque is proportional to the tire vertical force, so the adhesive capacity is met. The electric scooter can operate stably on the slope road at a speed of more than 1.5 m/s and turn stably at yawing velocities of 10° and 90°per second.
基金Sponsored by the National Natural Science Foundation of China(Grant No.10832007)
文摘Supercavitating flow around a slender symmetric wedge moving at variable velocity in static fluid has been studied. Singular integral equation for the flow has been founded through distributing the sources and sinks on the symmetrical axis. The supereavity length at each moment is determined by solving the singular integral equation with finite difference method. The supercavity shape at each moment is obtained by solving the partial differential equation with variable coefficient. For the case that the wedge takes the impulse and uniformly variable motion, numerical results of time history of the supercavity length and shape are presented. The calculated results indicate that the shape and the length of the supercavity vary in a similar way to the case that the wedge takes variable motion, and there is a time lag in unsteady supercavitating flow induced by the variation of wedge velocity.
基金Project(41202220) supported by the National Natural Science Foundation of ChinaProject(2011YYL034) supported by the Fundamental Research Funds for the Central Universities,China
文摘A new technique for the analysis of the three-dimensional collapse failure mechanism and the ground surface settlements for the large-diameter shield tunnels were presented.The technique is based on a velocity field model using more different truncated solid conical blocks to clarify the multiblock failure mechanism.Furthermore,the shape of blocks between the failure surface and the tunnel face was considered as an entire circle,and the supporting pressure was assumed as non-uniform distribution on the tunnel face and increased with the tunnel embedded depth.The ground surface settlements and failure mechanism above large-diameter shield tunnels were also investigated under different supporting pressures by the finite difference method.
基金Project(51275530)supported by the National Natural Science Foundation of China
文摘The theoretical model of axial ultrasonic vibration grinding force is built on the basis of a mathematical model of cutting deforming force deduced from the assumptions of thickness of the undeformed debris under Rayleigh distribution and a mathematical model of friction based on the theoretical analysis of relative sliding velocity of abrasive and workpiece. Then, the coefficients of the ultrasonic vibration grinding force model are calculated through analysis of nonlinear regression of the theoretical model by using MATLAB, and the law of influence of grinding depth, workpiece speed, frequency and amplitude of the mill on the grinding force is summarized after applying the model to analyze the ultrasonic grinding force. The result of the above-mentioned law shows that the grinding force decreases as frequency and amplitude increase, while increases as grinding depth and workpiece speed increase; the maximum relative error of prediction and experimental values of the normal grinding force is 11.47% and its average relative error is 5.41%; the maximum relative error of the tangential grinding force is 10.14% and its average relative error is 4.29%. The result of employing regression equation to predict ultrasonic grinding force approximates to the experimental data, therefore the accuracy and reliability of the model is verified.
基金National Natural Science Foundation of China(No.50975246)
文摘A new type of differential double-stator swing hydraulic motor, based on double stator structure, was introduced. Compared with the traditional swing hydraulic motors, it could provide various kinds of rotational speeds and torques under the same conditions of input flow rate and pressure. The operating prindple and graphic symbols were described. The output speed and torque characters in multifarious connection modes were analyzed through single-acting differential double-stator swing hydraulic multi-motors. Then the differential connection modes and differential principles of differential double-stator swing hydraulic multi-motors were stated. Furthermore, the output speed and torque characters of double- acting and triple-acting ones in multifarious connection modes were gotten. The interaction between output torque and the displacement ratio was studied. Finally, the internal leakage that influenced the volumetric efficiency was researched. The theoretical and experimental researches show that the differential double-stutor swing hydraulic multi-motors can provide various kinds of rotational speeds and torques. Predictably, this new kind of swing hydraulic multi-motors has broad application prospects in machine tool equipments, engineering machineries, and simulation turntables.
基金Supported by the National High Technology Research and Development Programme of China(No.2015AA8082065)the National Natural Science Foundation of China(No.61205143)
文摘Dynamic characteristics and tracking precision are studied in the photoelectric tracking system and a linear active disturbance rejection control( LADRC) scheme is proposed for position loop. A current and speed controller is designed by a transfer function model,which is obtained by adaptive differential evolution. Model error,friction and nonlinear factor existing in position loop are treated as ‘disturbance',which is estimated and compensated by generalized proportional integral( GPI)observer. Comparative results are provided to demonstrate the remarkable performance of the proposed method. It turns out that the proposed scheme is successful and has superior features,such as quick dynamic response,low overshoot and high tracking precision. Furthermore,with the proposed method,friction is suppressed effectively.