Aluminum alloys are subjected to large deformation and decreased strength due to the high expansion modulus caused by heat effects during friction stir welding (FSW).The optimum conditions for friction stir welding ...Aluminum alloys are subjected to large deformation and decreased strength due to the high expansion modulus caused by heat effects during friction stir welding (FSW).The optimum conditions for friction stir welding of 5052-O and 6061-T6 Al alloys were determined.The optimum traveling and rotation speeds were identified to be 61mm/min and 1600r/min using various mechanical characteristic evaluation methods.展开更多
The behavior of the active layer of material bed within rotary kilns plays a key role in industrial applications.To obtain its influences on industrial process,different regimes of particle motion have been simulated ...The behavior of the active layer of material bed within rotary kilns plays a key role in industrial applications.To obtain its influences on industrial process,different regimes of particle motion have been simulated by discrete element method(DEM) in three dimensions under variant rotation speeds,filling degree,based on the background of induration process of iron ore pellets.The influences of the mentioned factors on the maximum thickness of the active layer and the average velocity of particles have been investigated.The average velocity of particles increases with Froude number following the power function over a wide range,and the maximum thickness rises with increasing rotation speed in a way of logarithm.The influence of the filling degree f on the maximum thickness exhibits a good linearity under two classic regimes,but the increasing of the average velocity of the active layer is limited at f=0.4.This basic research highlights the impact of the active layer within rotary kilns,and lays a good foundation for the further investigation in mixing and heat transfer within the particle bed inside rotary kilns.展开更多
The displacement of the origin of the accelerometer coordinate system relative to the origin of the base coordinate system is calculated by homogeneous transformation. The second order derivative of this displacement ...The displacement of the origin of the accelerometer coordinate system relative to the origin of the base coordinate system is calculated by homogeneous transformation. The second order derivative of this displacement is the acceleration of the origin to the accelerometer coordinate system. By means of the attitude relationship between the base coordinate system and the accelerometer coordinate system, the acceleration components on the three coordinate axes is obtained. Utilizing the Coriolis rotation coordinate theorem, the three components are also calculated. The homogeneous transtbrmation method and vector differential method lead to identical results.展开更多
A356 is a high strength aluminium-silicon cast alloy used in food,chemical,marine,electrical and automotive industries.Fusion welding of this cast alloy will lead to many problems such as porosity,micro-fissuring,and ...A356 is a high strength aluminium-silicon cast alloy used in food,chemical,marine,electrical and automotive industries.Fusion welding of this cast alloy will lead to many problems such as porosity,micro-fissuring,and hot cracking.However,friction stir welding(FSW) can be used to weld this cast alloy without above mentioned defects.An attempt was made to study the effect of FSW process parameters on the tensile strength of cast A356 aluminium alloy.Joints were made using different combinations of tool rotation speed,welding speed and axial force.The quality of weld zone was analyzed by macrostructure and microstructure analyses.Tensile strengths of the joints were evaluated and correlated with the weld zone hardness and microstructure.The joint fabricated using a rotational speed of 1000 r/min,a welding speed of 75 mm/min and an axial force of 5 kN showed a higher tensile strength compared to the other joints.展开更多
The flow between a grooved and a flat plate was presented to investigate the effects of groove on the behavior of hydro-viscous drive. The flow was solved by using computational fluid dynamics (CFD) code, Fluent. Para...The flow between a grooved and a flat plate was presented to investigate the effects of groove on the behavior of hydro-viscous drive. The flow was solved by using computational fluid dynamics (CFD) code, Fluent. Parameters related to the flow, such as velocity, pressure, temperature, axial force and viscous torque, are obtained. The results show that pressure at the upstream notch is negative, pressure at the downstream notch is positive and pressure along the film thickness is almost the same. Dynamic pressure peak decreases as groove depth or groove number increases, but increases as output rotary speed increases. Consequently, the groove depth is suggested to be around 0.4 mm. Both the groove itself and groove parameters (i.e. groove depth, groove number) have little effect on the flow temperature. Circumferential pressure gradient induced by the groove weakens the viscous torque on the grooved plate (driven plate) greatly. It has little change as the groove depth increases. However, it decreases dramatically as the groove number increases. The experiment results show that the trend of experimental temperature and pressure are the same with numerical results. And the output rotary speed also has relationship with input flow rate and flow temperature.展开更多
Low-speed rotation of disc in an internal circulation of a novel de-emulsification with rotation-dise horizental contactor(RHC-D) realized de-emulsification for O/W emulsions due to repeated coalescence in oil-wet nar...Low-speed rotation of disc in an internal circulation of a novel de-emulsification with rotation-dise horizental contactor(RHC-D) realized de-emulsification for O/W emulsions due to repeated coalescence in oil-wet narrow channels at a low rotation speed. For three emulsions included ethanol/water/2-ethyl-1-hexanol, ethanol/water/2-ethyl-1-hexanol/SDS(Sodium Dodecyl Sulfonate) and 2-ethyl-1-hexanol/water/SDS emulsion, deemulsification ratios of oil phase could reach 1, 1 and 0.67 respectively at 170 r·min-1, and de-emulsification ratios increased obviously after agitating 10 min. De-emulsification experiment in the seam indicated that oil droplet sizes in O/W emulsion became larger after de-emulsification. The main de-emulsification mechanism in RHCD was the coalescence of oil droplets in oil-wet narrow channels. With increase of the rotation speed, oil droplets dispersed better in the aqueous phase. However, de-emulsification effect enhanced due to the increase of the coalescence rate at a bit higher rotation speed. In addition, internal circulation made those O/W emulsions to be broken repeatedly, consequently de-emulsification ratio increased. Repeated de-emulsification through internal circulation might make continuous extraction of ethanol come true at a low rotation speed.展开更多
This paper investigates processing of fast-response data and corrections of turbulent fluxes obtained by using eddy covariance method based on data collected at an offshore observation tower during three Cold-intrusio...This paper investigates processing of fast-response data and corrections of turbulent fluxes obtained by using eddy covariance method based on data collected at an offshore observation tower during three Cold-intrusion(CI)events in the South China Sea in 2010. This study presents the data processing procedure in detail and compares frictional velocities(u*), sensible heat fluxes(H) and latent heat fluxes(LE) yielded by using different averaging periods and different coordinate rotation methods; evaluates the sonic temperature correction for sensible heat flux and the Webb correction for latent heat flux as a function of 10 m wind speed(u10) during the CIs. The results show(1) that the different averaging periods of 30 min and 10 min cause biases of u*(H, LE) within 5%(15%, 62%). The values of u*(H,LE) averaged from 30 mins are mostly larger than those averaged from 10 mins. We suggest that the averaging period of 10 min is not sufficiently long to capture all scale eddies and recommend 30 min averaging period in calculating turbulent fluxes using eddy covariance method during CIs;(2) that the values of u*(H, LE) obtained from double rotation(DR2) and those obtained from planar fit rotation(PF) have good agreements and correlation coefficients between them are larger than 0.99. Because PF method requires unchanged environment and it is easier to apply DR2 method, we suggest DR2 coordinate rotation method in processing fast-response data; and(3) that the median values of frictional velocity(sensible heat flux and latent heat flux) binned according to 2 m s^(-1) intervals of u_(10) increase(decrease,increase) by less than 9%(4%, 10%) by Coriolis corrections(sonic temperature corrections, Webb corrections), which decreases(decreases, increases) with increasing u10 when u10 are 5-17 m s^(-1).展开更多
In the IFMIF (International Fusion Materials Irradiation Facility), high-intensity deuteron ion beam is targeted at flowing liquid Li to produce neutron for long-time irradiation test of fusion materials. Radioactiv...In the IFMIF (International Fusion Materials Irradiation Facility), high-intensity deuteron ion beam is targeted at flowing liquid Li to produce neutron for long-time irradiation test of fusion materials. Radioactive tritium (T) will be produced as by-product of the D-Li reaction. Y hot trap is expected as an effective system to recover T from the liquid Li target loop. In the present study, absorption behavior of hydrogen isotopes in Y plates is experimentally and analytically investigated under stirring conditions of liquid Li. Experiments clarified that H2 absorption rates of solid Y immersed in Li are independent of the rotating rate in the range of 0 to 100 rpm and are in proportion to the inlet H2 concentration. The rate-determining step is H diffusion in Y. A mass-transfer coefficient is a useful parameter to correlate the overall H transfer from the gaseous phase through liquid Li to the solid Y plate. The effect of activation temperature on the overall performance when Y absorbs H is comparatively investigated. It is considered that heating at 673 K is effective to activate Y along with HF treatment.展开更多
A slurry erosion tank test rig was designed and built to investigate the erosion rates of different materials and effects of the influencing parameters on material loss and erosion profiles. A CFD (computational flui...A slurry erosion tank test rig was designed and built to investigate the erosion rates of different materials and effects of the influencing parameters on material loss and erosion profiles. A CFD (computational fluid dynamics) tool is applied to study the flow impact velocity, solid concentration and particle size effects on the erosion rate of sample plates in the liquid-solid mixture in a cylindrical tank. The MRF (multiple reference frames) method is applied to model the rotating parts inside the tank. The flow behavior and liquid-solid interactions in the slurry tank test rig are simulated and the results are validated with the experimental data. It was approved that changing the height and diameter of each rotating zone (MRF zones) have a negligible effect on simulation results. It was observed that the erosion mass losses are increasing with increase in flow velocity and sand concentration. Both variations can be predicted with a logarithmic dependence of mass loss to rotational velocity and sand concentration. The increase in erosion rate by increase in particle size was also observed for three various particle size distributions.展开更多
There are many types of cyclone dust collectors for separating the fine solid and dust particles from gases in the various industries and also in the home used purposes. For estimating the power loss and the collectio...There are many types of cyclone dust collectors for separating the fine solid and dust particles from gases in the various industries and also in the home used purposes. For estimating the power loss and the collection efficiency, one of the most important factors is the maximum tangential velocity V0m in the vortex core region in the cyclone body. In order to determine V0~ by the simple method, it is useful to apply the mechanical balance of the angular momentum fluxes under the assumption of Ogawa combined vortex model which is composed of the quasi-forced vortex in the vortex core region and also the quasi-free vortex surrounded the vortex core region and also under the assumption of the introduction of equivalent length Heq corresponding to the cone spaces of the cyclone body and the dust bunker. On the other hand, the mean rotational velocity Voi near the concave wall surface is also estimated by the mechanical balance of angular momentum fluxes with the moment of viscous friction force. For confirming the general applications of the obtained equations, the returned flow types cyclones changed the throat diameter D3 are designed. The material of the cyclone is the transparent acrylic resin. Therefore the inner surface of the cyclone body can be regarded as smooth surface. The comparisons of the measured velocities V~ and Voi by a cylindrical Pitot tube are shown in good agreement with those of the proposed equations. The above stated results are described in detail.展开更多
In the present work, we develop a method to derive the anomalous velocity of a spinning electron. From Dirac equation, the relationships among the expectation values of the Pryce's mass-center operator, the positi...In the present work, we develop a method to derive the anomalous velocity of a spinning electron. From Dirac equation, the relationships among the expectation values of the Pryce's mass-center operator, the position operator, the spin operator and the canonical momentum operator are investigated. By requiring that the center of mass for a classical spinning electron is related to the expectation value of Pryce's mass-center operator, one can obtain a classical expression for the position of the electron.With the classical equations of motion, the anomalous velocity of a spinning electron can be easily obtained. It is shown that two factors contribute to the anomalous velocity: one is dependent on the selection of Pryce's mass-center operators and the other is a type-independent velocity expressed by the rotational velocity and the Lorentz force.展开更多
During the evolution of the binary system, many physical processes occur, which can influence the orbital angular velocity and the spin angular velocities of the two components, and influence the non-synchronous or sy...During the evolution of the binary system, many physical processes occur, which can influence the orbital angular velocity and the spin angular velocities of the two components, and influence the non-synchronous or synchronous rotation of the system. These processes include the transfer of masses and angular momentums between the component stars, the loss of mass and angular momentum via stellar winds, and the deformation of the structure of component stars. A study of these processes indicates that they are closely related to the combined effects of tide and rotation. This means, to study the synchronous or non-synchronous rotation of binary systems, one has to consider the contributions of different physical processes simultaneously, instead of the tidal effect alone. A way to know whether the rotation of a binary system is synchronous or non-synchronous is to calculate the orbital angular velocity and the spin angular velocities of the component stars. If all of these angular velocities are equal, the rotation of the system is synchronous. If not, the rotation of the system is non-synchronous. For this aim, a series of equations are developed to calculate the orbital and spin angular velocities. The evolutionary calculation of a binary system with masses of 10M~ + 6Me shows that the transfer of masses and angular momentums between the two components, and the deformation of the components structure in the semidetached or in the contact phase can change the rotation of the system from synchronous into non-synchronous rotation.展开更多
文摘Aluminum alloys are subjected to large deformation and decreased strength due to the high expansion modulus caused by heat effects during friction stir welding (FSW).The optimum conditions for friction stir welding of 5052-O and 6061-T6 Al alloys were determined.The optimum traveling and rotation speeds were identified to be 61mm/min and 1600r/min using various mechanical characteristic evaluation methods.
基金Project(FRF-AS-10-0058) supported by the Fundamental Research Funds for the Central Universities,China
文摘The behavior of the active layer of material bed within rotary kilns plays a key role in industrial applications.To obtain its influences on industrial process,different regimes of particle motion have been simulated by discrete element method(DEM) in three dimensions under variant rotation speeds,filling degree,based on the background of induration process of iron ore pellets.The influences of the mentioned factors on the maximum thickness of the active layer and the average velocity of particles have been investigated.The average velocity of particles increases with Froude number following the power function over a wide range,and the maximum thickness rises with increasing rotation speed in a way of logarithm.The influence of the filling degree f on the maximum thickness exhibits a good linearity under two classic regimes,but the increasing of the average velocity of the active layer is limited at f=0.4.This basic research highlights the impact of the active layer within rotary kilns,and lays a good foundation for the further investigation in mixing and heat transfer within the particle bed inside rotary kilns.
文摘The displacement of the origin of the accelerometer coordinate system relative to the origin of the base coordinate system is calculated by homogeneous transformation. The second order derivative of this displacement is the acceleration of the origin to the accelerometer coordinate system. By means of the attitude relationship between the base coordinate system and the accelerometer coordinate system, the acceleration components on the three coordinate axes is obtained. Utilizing the Coriolis rotation coordinate theorem, the three components are also calculated. The homogeneous transtbrmation method and vector differential method lead to identical results.
文摘A356 is a high strength aluminium-silicon cast alloy used in food,chemical,marine,electrical and automotive industries.Fusion welding of this cast alloy will lead to many problems such as porosity,micro-fissuring,and hot cracking.However,friction stir welding(FSW) can be used to weld this cast alloy without above mentioned defects.An attempt was made to study the effect of FSW process parameters on the tensile strength of cast A356 aluminium alloy.Joints were made using different combinations of tool rotation speed,welding speed and axial force.The quality of weld zone was analyzed by macrostructure and microstructure analyses.Tensile strengths of the joints were evaluated and correlated with the weld zone hardness and microstructure.The joint fabricated using a rotational speed of 1000 r/min,a welding speed of 75 mm/min and an axial force of 5 kN showed a higher tensile strength compared to the other joints.
基金Project(50475106)supported by the National Natural Science Foundation of China
文摘The flow between a grooved and a flat plate was presented to investigate the effects of groove on the behavior of hydro-viscous drive. The flow was solved by using computational fluid dynamics (CFD) code, Fluent. Parameters related to the flow, such as velocity, pressure, temperature, axial force and viscous torque, are obtained. The results show that pressure at the upstream notch is negative, pressure at the downstream notch is positive and pressure along the film thickness is almost the same. Dynamic pressure peak decreases as groove depth or groove number increases, but increases as output rotary speed increases. Consequently, the groove depth is suggested to be around 0.4 mm. Both the groove itself and groove parameters (i.e. groove depth, groove number) have little effect on the flow temperature. Circumferential pressure gradient induced by the groove weakens the viscous torque on the grooved plate (driven plate) greatly. It has little change as the groove depth increases. However, it decreases dramatically as the groove number increases. The experiment results show that the trend of experimental temperature and pressure are the same with numerical results. And the output rotary speed also has relationship with input flow rate and flow temperature.
文摘Low-speed rotation of disc in an internal circulation of a novel de-emulsification with rotation-dise horizental contactor(RHC-D) realized de-emulsification for O/W emulsions due to repeated coalescence in oil-wet narrow channels at a low rotation speed. For three emulsions included ethanol/water/2-ethyl-1-hexanol, ethanol/water/2-ethyl-1-hexanol/SDS(Sodium Dodecyl Sulfonate) and 2-ethyl-1-hexanol/water/SDS emulsion, deemulsification ratios of oil phase could reach 1, 1 and 0.67 respectively at 170 r·min-1, and de-emulsification ratios increased obviously after agitating 10 min. De-emulsification experiment in the seam indicated that oil droplet sizes in O/W emulsion became larger after de-emulsification. The main de-emulsification mechanism in RHCD was the coalescence of oil droplets in oil-wet narrow channels. With increase of the rotation speed, oil droplets dispersed better in the aqueous phase. However, de-emulsification effect enhanced due to the increase of the coalescence rate at a bit higher rotation speed. In addition, internal circulation made those O/W emulsions to be broken repeatedly, consequently de-emulsification ratio increased. Repeated de-emulsification through internal circulation might make continuous extraction of ethanol come true at a low rotation speed.
基金Science and Technology Program of Guangzhou,China(201510010218)National Key Project for Basic Research(973 project)(2015CB452802)+2 种基金National Natural Science Foundation of China(41675019,41475014,41475061,41675021 and 41475102)Strategic Priority Research Program of the Chinese Academy of Sciences(XDA11010403)Natural Science Foundation of Guangdong Province of China(2016A030310009)
文摘This paper investigates processing of fast-response data and corrections of turbulent fluxes obtained by using eddy covariance method based on data collected at an offshore observation tower during three Cold-intrusion(CI)events in the South China Sea in 2010. This study presents the data processing procedure in detail and compares frictional velocities(u*), sensible heat fluxes(H) and latent heat fluxes(LE) yielded by using different averaging periods and different coordinate rotation methods; evaluates the sonic temperature correction for sensible heat flux and the Webb correction for latent heat flux as a function of 10 m wind speed(u10) during the CIs. The results show(1) that the different averaging periods of 30 min and 10 min cause biases of u*(H, LE) within 5%(15%, 62%). The values of u*(H,LE) averaged from 30 mins are mostly larger than those averaged from 10 mins. We suggest that the averaging period of 10 min is not sufficiently long to capture all scale eddies and recommend 30 min averaging period in calculating turbulent fluxes using eddy covariance method during CIs;(2) that the values of u*(H, LE) obtained from double rotation(DR2) and those obtained from planar fit rotation(PF) have good agreements and correlation coefficients between them are larger than 0.99. Because PF method requires unchanged environment and it is easier to apply DR2 method, we suggest DR2 coordinate rotation method in processing fast-response data; and(3) that the median values of frictional velocity(sensible heat flux and latent heat flux) binned according to 2 m s^(-1) intervals of u_(10) increase(decrease,increase) by less than 9%(4%, 10%) by Coriolis corrections(sonic temperature corrections, Webb corrections), which decreases(decreases, increases) with increasing u10 when u10 are 5-17 m s^(-1).
文摘In the IFMIF (International Fusion Materials Irradiation Facility), high-intensity deuteron ion beam is targeted at flowing liquid Li to produce neutron for long-time irradiation test of fusion materials. Radioactive tritium (T) will be produced as by-product of the D-Li reaction. Y hot trap is expected as an effective system to recover T from the liquid Li target loop. In the present study, absorption behavior of hydrogen isotopes in Y plates is experimentally and analytically investigated under stirring conditions of liquid Li. Experiments clarified that H2 absorption rates of solid Y immersed in Li are independent of the rotating rate in the range of 0 to 100 rpm and are in proportion to the inlet H2 concentration. The rate-determining step is H diffusion in Y. A mass-transfer coefficient is a useful parameter to correlate the overall H transfer from the gaseous phase through liquid Li to the solid Y plate. The effect of activation temperature on the overall performance when Y absorbs H is comparatively investigated. It is considered that heating at 673 K is effective to activate Y along with HF treatment.
文摘A slurry erosion tank test rig was designed and built to investigate the erosion rates of different materials and effects of the influencing parameters on material loss and erosion profiles. A CFD (computational fluid dynamics) tool is applied to study the flow impact velocity, solid concentration and particle size effects on the erosion rate of sample plates in the liquid-solid mixture in a cylindrical tank. The MRF (multiple reference frames) method is applied to model the rotating parts inside the tank. The flow behavior and liquid-solid interactions in the slurry tank test rig are simulated and the results are validated with the experimental data. It was approved that changing the height and diameter of each rotating zone (MRF zones) have a negligible effect on simulation results. It was observed that the erosion mass losses are increasing with increase in flow velocity and sand concentration. Both variations can be predicted with a logarithmic dependence of mass loss to rotational velocity and sand concentration. The increase in erosion rate by increase in particle size was also observed for three various particle size distributions.
文摘There are many types of cyclone dust collectors for separating the fine solid and dust particles from gases in the various industries and also in the home used purposes. For estimating the power loss and the collection efficiency, one of the most important factors is the maximum tangential velocity V0m in the vortex core region in the cyclone body. In order to determine V0~ by the simple method, it is useful to apply the mechanical balance of the angular momentum fluxes under the assumption of Ogawa combined vortex model which is composed of the quasi-forced vortex in the vortex core region and also the quasi-free vortex surrounded the vortex core region and also under the assumption of the introduction of equivalent length Heq corresponding to the cone spaces of the cyclone body and the dust bunker. On the other hand, the mean rotational velocity Voi near the concave wall surface is also estimated by the mechanical balance of angular momentum fluxes with the moment of viscous friction force. For confirming the general applications of the obtained equations, the returned flow types cyclones changed the throat diameter D3 are designed. The material of the cyclone is the transparent acrylic resin. Therefore the inner surface of the cyclone body can be regarded as smooth surface. The comparisons of the measured velocities V~ and Voi by a cylindrical Pitot tube are shown in good agreement with those of the proposed equations. The above stated results are described in detail.
基金supported by the National Natural Science Foundation of China (Grant Nos. 11405136, and 11747311)the Fundamental Research Funds for the Central Universities (Grant No. 2682016CX059)
文摘In the present work, we develop a method to derive the anomalous velocity of a spinning electron. From Dirac equation, the relationships among the expectation values of the Pryce's mass-center operator, the position operator, the spin operator and the canonical momentum operator are investigated. By requiring that the center of mass for a classical spinning electron is related to the expectation value of Pryce's mass-center operator, one can obtain a classical expression for the position of the electron.With the classical equations of motion, the anomalous velocity of a spinning electron can be easily obtained. It is shown that two factors contribute to the anomalous velocity: one is dependent on the selection of Pryce's mass-center operators and the other is a type-independent velocity expressed by the rotational velocity and the Lorentz force.
基金supported by the National Natural Science Foundation of China(Grant No.10933002)
文摘During the evolution of the binary system, many physical processes occur, which can influence the orbital angular velocity and the spin angular velocities of the two components, and influence the non-synchronous or synchronous rotation of the system. These processes include the transfer of masses and angular momentums between the component stars, the loss of mass and angular momentum via stellar winds, and the deformation of the structure of component stars. A study of these processes indicates that they are closely related to the combined effects of tide and rotation. This means, to study the synchronous or non-synchronous rotation of binary systems, one has to consider the contributions of different physical processes simultaneously, instead of the tidal effect alone. A way to know whether the rotation of a binary system is synchronous or non-synchronous is to calculate the orbital angular velocity and the spin angular velocities of the component stars. If all of these angular velocities are equal, the rotation of the system is synchronous. If not, the rotation of the system is non-synchronous. For this aim, a series of equations are developed to calculate the orbital and spin angular velocities. The evolutionary calculation of a binary system with masses of 10M~ + 6Me shows that the transfer of masses and angular momentums between the two components, and the deformation of the components structure in the semidetached or in the contact phase can change the rotation of the system from synchronous into non-synchronous rotation.