为实现栓系无人机快速精准地完成光电侦察任务,设计一套以数字信号处理器(digital signal processor,DSP)为控制核心,以三轴光纤陀螺实现视轴稳定的光电侦察任务载荷控制系统。介绍该系统的组成、工作原理、硬件原理框图以及电机选型计...为实现栓系无人机快速精准地完成光电侦察任务,设计一套以数字信号处理器(digital signal processor,DSP)为控制核心,以三轴光纤陀螺实现视轴稳定的光电侦察任务载荷控制系统。介绍该系统的组成、工作原理、硬件原理框图以及电机选型计算方法,采用双速度环的控制模型实现高精度稳定控制。结果表明,该任务载荷控制系统的控制方法对提高无人机稳定瞄准和跟踪具有一定的工程参考价值。展开更多
Spacing characteristics of Langmuir circulation (LC) arc computed by large eddy simulation (LES) model under modest wind. LC is an organized vertical motion, evidenced as buoyant materials forming lines nearly par...Spacing characteristics of Langmuir circulation (LC) arc computed by large eddy simulation (LES) model under modest wind. LC is an organized vertical motion, evidenced as buoyant materials forming lines nearly parallel to the wind direction. The horizontal distribution of velocity computed by LES shows clear lines formed by LC. These lines grow and parallel to each other for a while, which we call the stable state, before they finally form Y-junctions. We computed spacing between every two parallel lines by averaging them under the stable state. Statistically, spacing results of 154 tests (seven wind speed cases of 22 test runs each) show high correlations between spacing and wind speed, as well as mixed layer depth. The relationship of spacing and wind is important for future LC parameterization of upper-ocean mixing.展开更多
文摘为实现栓系无人机快速精准地完成光电侦察任务,设计一套以数字信号处理器(digital signal processor,DSP)为控制核心,以三轴光纤陀螺实现视轴稳定的光电侦察任务载荷控制系统。介绍该系统的组成、工作原理、硬件原理框图以及电机选型计算方法,采用双速度环的控制模型实现高精度稳定控制。结果表明,该任务载荷控制系统的控制方法对提高无人机稳定瞄准和跟踪具有一定的工程参考价值。
基金Supported by the National Natural Science Foundation of China(Nos.40876012,41176016)the Open Research Foundation for the State Key Laboratory of Satellite Ocean Environment Dynamics,Second Institute of Oceanography,State Oceanic Administration (No.SOED1210)the National Natural Science Foundation of China for Creative Research Groups (No.41121064)
文摘Spacing characteristics of Langmuir circulation (LC) arc computed by large eddy simulation (LES) model under modest wind. LC is an organized vertical motion, evidenced as buoyant materials forming lines nearly parallel to the wind direction. The horizontal distribution of velocity computed by LES shows clear lines formed by LC. These lines grow and parallel to each other for a while, which we call the stable state, before they finally form Y-junctions. We computed spacing between every two parallel lines by averaging them under the stable state. Statistically, spacing results of 154 tests (seven wind speed cases of 22 test runs each) show high correlations between spacing and wind speed, as well as mixed layer depth. The relationship of spacing and wind is important for future LC parameterization of upper-ocean mixing.