The equations of motion of a bubble, expanding adiabatically through an incompressible viscous fluid, are deduced when the centre of the bubble moves in a vertical plane in the presence of gravitational acceleration, ...The equations of motion of a bubble, expanding adiabatically through an incompressible viscous fluid, are deduced when the centre of the bubble moves in a vertical plane in the presence of gravitational acceleration, acting vertically downwards. The non-linear equations of motion obtained are solved numerically for different values of the various parameters of the problem. The path traced by the centre of the bubble and velocity of the centre, the change of radius R with time, and the influence of the buoyancy force, which is experienced by the expanding bubble for different values of the gravitational acceleration on these quantities, are investigated. The radius R(t) of the bubble is found to vary periodically with time when the acceleration due to gravity is small. But when the acceleration due to gravity increases, this periodicity in the value of R(t) with t is lost. The influence of viscosity in determining the periodicity of the bubble motion is also investigated.展开更多
The spatial variability of geotechnical earthquake engineering critical parameters obtained by laboratory and in situ tests in the same area is affected by different measurements. The paper provides a brief synthesis ...The spatial variability of geotechnical earthquake engineering critical parameters obtained by laboratory and in situ tests in the same area is affected by different measurements. The paper provides a brief synthesis of ground motion and site effects analysis procedures within a Performance-Based Design framework. In particular it focuses about the influence on the evaluation of site effects in some active regions by different shear waves velocity measurements (Down Hole D-H and Seismic Dilatometer Marchetti Test SDMT). Moreover the variation of shear modulus and damping ratio with strain level and depth from different laboratory dynamic or cyclic tests for soil characterisation (Resonant Column Test RCT) was evaluated. The available data enabled one to compare the shear waves velocity profile obtained by laboratory and in situ tests (Cone Penetration Tests CPT) with empirical correlations proposed in literature.展开更多
文摘The equations of motion of a bubble, expanding adiabatically through an incompressible viscous fluid, are deduced when the centre of the bubble moves in a vertical plane in the presence of gravitational acceleration, acting vertically downwards. The non-linear equations of motion obtained are solved numerically for different values of the various parameters of the problem. The path traced by the centre of the bubble and velocity of the centre, the change of radius R with time, and the influence of the buoyancy force, which is experienced by the expanding bubble for different values of the gravitational acceleration on these quantities, are investigated. The radius R(t) of the bubble is found to vary periodically with time when the acceleration due to gravity is small. But when the acceleration due to gravity increases, this periodicity in the value of R(t) with t is lost. The influence of viscosity in determining the periodicity of the bubble motion is also investigated.
文摘The spatial variability of geotechnical earthquake engineering critical parameters obtained by laboratory and in situ tests in the same area is affected by different measurements. The paper provides a brief synthesis of ground motion and site effects analysis procedures within a Performance-Based Design framework. In particular it focuses about the influence on the evaluation of site effects in some active regions by different shear waves velocity measurements (Down Hole D-H and Seismic Dilatometer Marchetti Test SDMT). Moreover the variation of shear modulus and damping ratio with strain level and depth from different laboratory dynamic or cyclic tests for soil characterisation (Resonant Column Test RCT) was evaluated. The available data enabled one to compare the shear waves velocity profile obtained by laboratory and in situ tests (Cone Penetration Tests CPT) with empirical correlations proposed in literature.