期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
利用速度结构与震源参数联合反演算法研究天津及邻近地区小震重定位特征
1
作者 谢静 刘双庆 李雅静 《地震地磁观测与研究》 2013年第3期46-51,共6页
利用2002年1月至2008年12月天津地震台网产出的初至P波走时资料,通过震源与速度结构联合反演算法,计算出天津及邻近地区三维P波速度结构的优化模型,同时获得1 738次中小地震的重新定位结果。结果表明,天津及邻近地区中小地震分布具有与... 利用2002年1月至2008年12月天津地震台网产出的初至P波走时资料,通过震源与速度结构联合反演算法,计算出天津及邻近地区三维P波速度结构的优化模型,同时获得1 738次中小地震的重新定位结果。结果表明,天津及邻近地区中小地震分布具有与强震相同的地壳深部介质背景,主要分布在高低速度过渡带;天津及邻近地区中小地震震源深度重新定位后更集中分布在10-15 km深度范围内。 展开更多
关键词 三维速度结构 小震重新定位 震源深度 速度结构层析成像
下载PDF
Research on the 3-D Seismic Structures in Qinghai-Xizang Plateau 被引量:1
2
作者 Ding Zhifeng, He Zhengqin, Wu Jianping, and Sun WeiguoInstitute of Geophysics, China Seismological Bureau, Beijing 100081, China 《Earthquake Research in China》 2002年第1期27-38,共12页
Based on the recording data from the analogue and broadband digital seismic stations in and around Qinghai-Xizang (Tibet) Plateau, the three dimensional (3-D) seismic velocity structures in Qinghai-Xizang Plateau were... Based on the recording data from the analogue and broadband digital seismic stations in and around Qinghai-Xizang (Tibet) Plateau, the three dimensional (3-D) seismic velocity structures in Qinghai-Xizang Plateau were obtained by using the regional body wave tomography and surface wave tomography. The results from these two tomography methods have similar characteristics for P- and S-wave velocity structures in crust and upper mantle. They show that there are remarkable low velocity zones in the upper crust of Lhasa block in the southern Qinghai-Xizang Plateau and the lower crust and upper mantle of Qiangtang block in the northern Qinghai-Xizang Plateau. These phenomena may be related to the different steps of collision process in southern and northern Qinghai-Xizang Plateau. 展开更多
关键词 Qinghai-Xizang Plateau Seismic tomography 3-D velocity structure
下载PDF
Three-dimensional crustal velocity structure and activity characteristics of the Madoi Ms7.4 earthquake in 2021
3
作者 Ma Yong Zhang Hai-Jiang +1 位作者 Gao Lei and Chen Zhi-Gang 《Applied Geophysics》 SCIE CSCD 2022年第4期590-602,605,共14页
In this paper,using natural earthquake P-wave arrival time data recorded by the seismic network in the surrounding area of Madoi,the three-dimensional fine P-wave crustal velocity structure at depths above 60 km in th... In this paper,using natural earthquake P-wave arrival time data recorded by the seismic network in the surrounding area of Madoi,the three-dimensional fine P-wave crustal velocity structure at depths above 60 km in the epicenter of the Madoi Ms7.4 earthquake was inverted using the double-difference seismic tomography method.On the basis of the relocation of the source of the aftershock sequence,we summarized the strip-shaped distribution characteristics along the strike of the Jiangcuo fault,revealing the significant heterogeneity of the crustal velocity structure in the source area.Research has found that most of the Madoi Ms7.4 aftershocks were located in the weak area of the high-speed anomaly in the upper crust.The focal depth changed with the velocity structure,showing obvious fluctuation and segmentation characteristics.There was a good correspondence between the spatial distribution and the velocity structure.The high-velocity bodies of the upper crust in the hypocenter area provided a medium environment for earthquake rupture,the low-velocity bodies of the middle crust formed the deep material,and the migration channel and the undulating shape of the high-speed body in the lower crust corroborated the strong pushing action in the region.The results confirmed that under the continuous promotion of tectonic stress in the Madoi area,the high-speed body of the Jiangcuo fault blocked the migration of weak materials in the middle crust.When the stress accumulation exceeded the limit,the Madoi Ms7.4 earthquake occurred.Meanwhile,the nonuniform velocity structure near the fault plane determined the location of the main shock and the spatiotemporal distribution of the aftershock sequence. 展开更多
关键词 Madoi Ms7.4 earthquake double-difference tomography 3D velocity structure seismic activity characteristics
下载PDF
Crustal S-velocity structure and radial anisotropy beneath the southern part of central and western North China Craton and the adjacent Qilian Orogenic Belt from ambient noise tomography 被引量:7
4
作者 LING Yuan CHEN Ling +2 位作者 WEI ZiGen JIANG MingMing WANG Xu 《Science China Earth Sciences》 SCIE EI CAS CSCD 2017年第10期1752-1768,共17页
The crustal S-velocity structure and radial anisotropy along a dense linear portable seismic array with 64 broadband seismic stations were investigated from ambient noise tomography with about one-year-long ambient no... The crustal S-velocity structure and radial anisotropy along a dense linear portable seismic array with 64 broadband seismic stations were investigated from ambient noise tomography with about one-year-long ambient noise recordings. The array transverses the southern part of the central North China Craton(CNCC) and western NCC(WNCC) from east to west and reaches the adjacent Qilian Orogenic Belt(QOB). The phase velocity structures of Rayleigh waves at 5–35 s and Love waves at 5–30 s were measured. The crustal S-velocity structures(Vsv and Vsh) were constructed from the dispersion data(Rayleigh and Love waves,respectively) from point-wise linear inversion with prior information of the Moho depth and average crustal Vp/Vs ratio. The radial anisotropy along the profile was calculated based on the discrepancies between Vsv and Vsh as 2×(Vsh.Vsv)/(Vsh+Vsv). The results show distinct structural variations in the three major tectonic units. The crustal architecture in the southern CNCC is complicated and featured with wide-distributed low-velocity zones(LVZs), which may be a reflection of crustal modification resulting from Mesozoic-Cenozoic tectonics and magmatic activities. The pronounced positive radial anisotropy in the lower-lowermost crust beneath the Shanxi-Shaanxi Rift and the neighboring areas could be attributed to the underplating of mantle mafic-ultramafic materials during the Mesozoic-Cenozoic tectonic activation. In southern Ordos, the overall weak lateral velocity variations, relative high velocity and large-scale positive radial anisotropy in mid-lower crust probably suggest that the current crustal structure has preserved its Precambrian tectonic characteristics. The low-velocity westward-dipping sedimentary strata in the Ordos Block could be attributed to the Phanerozoic whole-basin tilting and the uneven erosion since late Cretaceous. Integrated with previous studies, the systematic comparison of crustal architecture was made between the southern and northern part of CNCC-WNCC. The similarities and differences may have a relation with the tectonic events and deformation histories experienced before and after the Paleoproterozoic amalgamation of the NCC. The nearly flat mid-crustal LVZ beneath the southern QOB weakens gradually as it extends to the east, which is a feature probably associated with crustal vertical superpositionand ductile shear deformation under the intensive compressional regime due to the northeastward growth and expansion of the Tibetan Plateau. 展开更多
关键词 North China Craton Qilian Orogenic Belt Ambient noise tomography Crustal S-velocity structure Radial anisotropy
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部