Based on piezoresistive effect, the acceleration sensitivity of multi-walled canbon nanotube (MWNT) films was investigated. A three-point bending technique was presented to measure the piezoresistivity, which used a b...Based on piezoresistive effect, the acceleration sensitivity of multi-walled canbon nanotube (MWNT) films was investigated. A three-point bending technique was presented to measure the piezoresistivity, which used a bending stress applied to the samples while making MWNT films wheeling with a rotational machine. The experimental results showed that the fractional increase in resistance increases linearly versus the increase of centripetal acceleration, and there is a linear relationship between the acceleration and the strain. These shed light on using carbon nanotube films as acceleration sensors for many potential applications.展开更多
We studied the biological effects of different magnetic fields. Identified bacterial strain Escherichia coli (type I) has been exposed to the dipolar magnetic field force (400, 800, 1200 and 1600 Gausses) which pr...We studied the biological effects of different magnetic fields. Identified bacterial strain Escherichia coli (type I) has been exposed to the dipolar magnetic field force (400, 800, 1200 and 1600 Gausses) which prepared locally with incubation for different period times (24, 48 and 72 hrs) at 37℃. The effects were evaluated by optical density (OD) at 600 nm determining their growth density incorporation with negative control and depending of McFarland turbidity standard (0.5), in addition to its susceptibility to various antibiotics. Results illustrate different forces of magnetic field decreased the growth rate of E. coli in particular at 24 hrs incubation comparing with unexposed or control samples. The magnetic field increased the logarithmic phase within 4-6 hrs of treatment but decreased after 16 to 18 hrs. Furthermore, changes in the antibiotic sensitivity were observed after exposure period of 6 hrs since E. coli cells became more sensitive to certain antibiotics. While after a 16 hrs exposure period, it became more resistant to the same antibiotics comparing with control groups.展开更多
基金Funded by the National Natural Science Foundation of China (No. 60376032 and No. 90406024) and the Key Teacher Foundation of Chongqing University.
文摘Based on piezoresistive effect, the acceleration sensitivity of multi-walled canbon nanotube (MWNT) films was investigated. A three-point bending technique was presented to measure the piezoresistivity, which used a bending stress applied to the samples while making MWNT films wheeling with a rotational machine. The experimental results showed that the fractional increase in resistance increases linearly versus the increase of centripetal acceleration, and there is a linear relationship between the acceleration and the strain. These shed light on using carbon nanotube films as acceleration sensors for many potential applications.
文摘We studied the biological effects of different magnetic fields. Identified bacterial strain Escherichia coli (type I) has been exposed to the dipolar magnetic field force (400, 800, 1200 and 1600 Gausses) which prepared locally with incubation for different period times (24, 48 and 72 hrs) at 37℃. The effects were evaluated by optical density (OD) at 600 nm determining their growth density incorporation with negative control and depending of McFarland turbidity standard (0.5), in addition to its susceptibility to various antibiotics. Results illustrate different forces of magnetic field decreased the growth rate of E. coli in particular at 24 hrs incubation comparing with unexposed or control samples. The magnetic field increased the logarithmic phase within 4-6 hrs of treatment but decreased after 16 to 18 hrs. Furthermore, changes in the antibiotic sensitivity were observed after exposure period of 6 hrs since E. coli cells became more sensitive to certain antibiotics. While after a 16 hrs exposure period, it became more resistant to the same antibiotics comparing with control groups.