The Qilian Orogenic belt is one of the typical orogenic belts globally and a natural laboratory for studying plate tectonics.Many researchers have studied the ophiolite and high pressure and ultra-high pressure metamo...The Qilian Orogenic belt is one of the typical orogenic belts globally and a natural laboratory for studying plate tectonics.Many researchers have studied the ophiolite and high pressure and ultra-high pressure metamorphic rocks in the Qilian orogen and obtained valuable achievements.However,a hot debate exists on the basement property,the distribution of ophiolite,and the boundaries of tectonic units.Large-scale high-precision aeromagnetic surveys have recently been conducted in the Qilian Orogenic belt and adjacent areas.In this study,we are trying to analysis the tectonic framework of the Qilian Orogen using 1:500,000 aeromagnetic data.The results provide geophysical perspectives for studying the structural framework and deformation of this area.According to the aeromagnetic∆T anomaly map,the central and Southern Qilian have the same magnetic anomaly feature that noticeably differs from the North Qilian Orogenic belt and the Qaidam Block.This result indicates that the central and Southern Qilian have a unified magnetic basement and differ from the North Qilian orogenic belt and Qaidam Block.The map shows the distribution of ophiolite in the North Qilian orogenic belt.Linear magnetic anomalies represent the ophiolites because the mafic–ultramafic rocks usually have high magnetic susceptibility.The ophiolite belts are continuously distributed in the western part of North Qilian orogenic belt and have a large scale.However,the scale of the ophiolite belt and the outcropping of mafic–ultramafic rocks reduces when they pass through Qilian County to the east.The results indicate differences in the evolution process between the eastern and western parts of North Qilian,with Qilian County as the transition zone.This study also systematically defines the geophysical boundaries of the Qaidam Block,Qilian Block,North Qilian Orogenic belt,and Alxa block.It is proposed that the sinistral displacement of the Altun Fault is adjusted and absorbed by the series of NE-trending faults in the Qilian orogen and merge into the Longshoushan–Gushi Fault.The extension of the North Qilian Orogenic belt is strengthened by the neotectonics movement along the shearing direction,which separated the North Qilian Orogenic belt into several segments and formed a series of northeast-trending faults.展开更多
In order to discuss the effect of tectonic stress on the structural evolution of coal, given the importance attached to High-resolution Transmission Electron Microscopy (HTEM), we investigated several aspects of mater...In order to discuss the effect of tectonic stress on the structural evolution of coal, given the importance attached to High-resolution Transmission Electron Microscopy (HTEM), we investigated several aspects of material structures of high-rank Carboniferous period coal, located in the northern foreland basin of the Dabie orogenic belt in eastern China. High powered crystal lattice images of Bright Fields (BF) and Selected Area Diffraction patterns (SAD) of different types of metamorphism in coal were obtained. The results show that the Basic Structural Units (BSU) become increasingly more compact as a function of rising tem-perature and pressure. Under pressure, the local orientation of molecules is strengthened, the arrangement of BSU speeds up and the degree of order is clearly enhanced.展开更多
In order to determine the area for oil and gas exploration in China’s north Sichuan basin,we have divided the time during which the Longmenshan foreland basin was formed into five periods,based on the sedimentary res...In order to determine the area for oil and gas exploration in China’s north Sichuan basin,we have divided the time during which the Longmenshan foreland basin was formed into five periods,based on the sedimentary response relationship of the foreland basin to structural evolution: 1) a late Triassic Noric period;2) an early-Middle Jurassic period;3) a late Jurassic to early Cretaceous period;4) a late Cretaceous to Paleogene-Neogene period and 5) the Quaternary period. As well,we analyzed the sedimentary environment and lithologic features of every basin-forming period. The results show that there are several favorable source-reservoir-cap assemblages in our study area,making it a major region for future oil and gas exploration in China’s northern Sichuan basin.展开更多
A thrust and nappe tectonic zone with imbricate branch thrusts is developed along the southern margin of the coal-forming region of North China. This tectonic zone is tightly related to the Qinling-Dabie collision oro...A thrust and nappe tectonic zone with imbricate branch thrusts is developed along the southern margin of the coal-forming region of North China. This tectonic zone is tightly related to the Qinling-Dabie collision orogen in genesis and belongs to the frontal zone of a huge thrust system developed during Yanshanian episode at the northern foot of the orogen. It is pointed out that thrusting had distorted the original depositional margin of the coal-forming region and some new coal-bearing blocks would be found out in the frontal sheets and under the undulate sole thrust.展开更多
The shape,texture,content and REE characteristics of zircons from the O2tnd-1,O3tnd-2,O3tnd-3pyroclastic rock of Tanjianshan Group on the north margin of Qaidam Basin indicate that the O2-3tndis the product of volcani...The shape,texture,content and REE characteristics of zircons from the O2tnd-1,O3tnd-2,O3tnd-3pyroclastic rock of Tanjianshan Group on the north margin of Qaidam Basin indicate that the O2-3tndis the product of volcanism during the transitional period from ocean-land interim crust to oceanic crust.The U-Pb surface ages obtained from O3tnd-2and O3tnd-3can be divided into 9 groups,every age group coincides with the period when significant tectonic-heat event took place at Oulongbuluke micro-continental base of northern Qaidam,suggesting that the base rocks have provided materials for the formation of sedimentary and volcanic rock in O2-3tnd.The volcanic rocks of O3tnd-3formed at 440 Ma,with time gap 46 Ma to those of O1tna-1and O3tnd-3may represent the minor period that Xitieshan back-arc extension have lasted,the scale of back-arc basin that formed in Xitieshan extension may approach to 1 400 km.Based on the test of ithochemistry data for major elements and analysis of Sr isotope geochemistry for the clastic sedimentary rock in O1tna-2and O3tnd-2,the authors get the conclusion that the O1tna-2and O3tnd-2of Tanjianshan Group may form in back-arc basin environment,while the lithology difference between these two formations may reflect the changes of geodynamic processes as the diagenesis tectonic environment transformed from continental margin depression to adjacent sea basin.展开更多
The Tongbai-Hong'an orogen is located in a key tectonic position linking the Qinling orogen to the west and the Dabie-Sulu orogen to the east. Because the orogen preserves a Paleozoic accretionary orogenic system ...The Tongbai-Hong'an orogen is located in a key tectonic position linking the Qinling orogen to the west and the Dabie-Sulu orogen to the east. Because the orogen preserves a Paleozoic accretionary orogenic system in the north and a latest PaleozoicMesozoic collisional orogenic system in the south, it may serve as an ideal place to study the tectonic evolution between the North and South China Blocks. The available literature data in the past 20 years indicate that the tectonic processes of the Tongbai-Hong'an orogen involved four stages during the Phanerozoic:(1) Early Paleozoic(490–420 Ma) oceanic subduction, arc magmatism and arc-continent collision created a new Andean-type active continental margin on the North China Block;(2) Late Paleozoic(340–310 Ma) oceanic subduction and accretion generated separated paired metamorphic belts: a medium P/T Wuguan-Guishan complex belt in the south of the Shandan-Songpa fault and a high P/T Xiongdian eclogite belt in the northern edge of the Mesozoic HP metamorphic terrane;(3) Latest Paleozoic-Early Mesozoic(255–200 Ma) continental subduction and collision formed the Tongbai HP terrane in the west and the Hong'an HP/UHP terrane in the east as a consequence of deep subduction towards the east and syn-subduction detachment/exhumation of the down-going slab;(4) Late Mesozoic(140–120 Ma) extension, voluminous magma intrusion and tectonic extrusion led to the final exhumation of the Tongbai-Hong'an-Dabie HP/UHP terrane and the wedge-shaped architecture of the terrane narrowing towards the west. However, many open questions still remain about the details of each evolutionary stage and earlier history of the orogen. Besides an extensive study directly on the Tongbai-Hong'an orogen in the future, integrated investigation on the "soft-collisional" Qinling orogen in the west and the "hard-collisional" Dabie-Sulu orogen in the east is required to establish a general tectonic model for the whole Qinling-TongbaiHong'an-Dabie-Sulu orogenic belt.展开更多
High εNd(t)-εHf(t) granites are robust evidence for crustal growth. In this paper we report results of petrologic, geochronological and geochemical investigations on the Huashiban granites from the Ailaoshan tec...High εNd(t)-εHf(t) granites are robust evidence for crustal growth. In this paper we report results of petrologic, geochronological and geochemical investigations on the Huashiban granites from the Ailaoshan tectonic zone in western Yunnan (SW China). Zircon grains separated from the two samples (10HH-119A and 10HH-120A) yield the weighted mean 206pb/238u ages of 229.9 ± 2.0 Ma and 229.3 ± 2.3 Ma, respectively, interpreted as the crystallization ages of the granites. Based on our results, in combination with the existing U-Pb geochronological data for the Ailaoshan metamorphic rocks, we propose that the Ai- laoshan Group might be a rock complex composed of the Mesoproterozoic, Neoproterozoic, Hercynian, Indosinian and Hima- layan components, rather than a part of the crystalline basement of the Yangtze block. The zircon grains show highly depleted Lu-Hf isotope compositions, with positive eHf(t) values ranging from 8.4 to 13.1. The Huashiban granites have high SiO2 (72.66 wt%-73.70 wt%), low Mg# (0.28-0.34) with A/CNK=1.01-1.05, and can be classified as peralumious high-K calc-alkaline I-type granites. A synthesis of these data indicates that the Ailaoshan tectonic zone had evolved into a post-collisional setting by the Late-Triassic (229 Ma). Genesis of the Huashiban high εNd(t)-εHf(t) granites involved into two processes: (1) underplating of the sub-arc mantle into the lower crust, and (2) remelting of the juvenile crustal materials in re- sponse to the upwelling of the asthenospheric mantle in the post-collisional setting.展开更多
Crustal subduction and continental collision is the core of plate tectonics theory. Understanding the formation and evolution of continental collision orogens is a key to develop the theory of plate tectonics. Differe...Crustal subduction and continental collision is the core of plate tectonics theory. Understanding the formation and evolution of continental collision orogens is a key to develop the theory of plate tectonics. Different types of subduction zones have been categorized based on the nature of subducted crust. Two types of collisional orogens, i.e. arc-continent and continent-continent collisional orogens, have been recognized based on the nature of collisional blocks and the composition of derivative rocks. Arc-continent collisional orogens contain both ancient and juvenile crustal rocks, and reworking of those rocks at the post-collisional stage generates magmatic rocks with different geochemical compositions. If an orogen is built by collision between two relatively old continental blocks, post-collisional magmatic rocks are only derived from reworking of the old crustal rocks. Collisional orogens undergo reactivation and reworking at action of lithosphere extension, with inheritance not only in the tectonic regime but also in the geochemical compositions of reworked products(i.e., magmatic rocks). In order to unravel basic principles for the evolution of continental tectonics at the post-collisional stages, it is necessary to investigate the reworking of orogenic belts in the post-collisional regime, to recognize physicochemical differences in deep continental collision zones, and to understand petrogenetic links between the nature of subducted crust and post-collisional magmatic rocks. Afterwards we are in a position to build the systematics of continental tectonics and thus to develop the plate tectonics theory.展开更多
During Carboniferous time,tremendous juvenile arc crust was formed in the southern Central Asian Orogenic Belt(CAOB),although its origin remains unclear.Herein,we presented zircon U-Pb-Hf and whole-rock geochemical an...During Carboniferous time,tremendous juvenile arc crust was formed in the southern Central Asian Orogenic Belt(CAOB),although its origin remains unclear.Herein,we presented zircon U-Pb-Hf and whole-rock geochemical and Sr-Nd isotopic data for a suite of volcanic and pyroclastic rocks from the Khan-Bogd area in southern Mongolia.These Carboniferous pyroclastic rocks generally have some early Paleozoic zircons,probably derived from the granitic and sedimentary rocks of the Lake Zone and the Gobi-Altai Zone to the north,indicative of a continental arc nature.In addition,they have a main zircon U-Pb age of ca.370–330 Ma,positive Hf and Nd isotopes,and mafic-intermediate arc affinity,similar to the coeval arc magmatism.Moreover,the pyroclastic rocks of the northern area have more mafic and older volcanic components with depositional time(ca.350–370 Ma;Visean and Bashkirian stages)earlier than that in the southern area(mainly ca.350–315 Ma;Serpukhovian and Bashkirian stages).Combining a preexisting northward subduction supported by the available magnetotelluric data with a slab rollback model of the main oceanic basin of the Paleo-Asian Ocean(PAO)during Carboniferous and Triassic times,we infer that the Carboniferous arc magmatism was probably derived from a backarc ocean triggered by slab rollback.Thus,the juvenile arc volcanism of Mongolia,together with other areas(e.g.,Junggar)in the southern CAOB,represented a significant lateral accretion that terminated after the Carboniferous due to a significant contraction of the PAO.展开更多
基金supported by the National Natural Science Foundation of China grant(U2244220)China Geological Survey Project grant(DD20190551,DD20230351)。
文摘The Qilian Orogenic belt is one of the typical orogenic belts globally and a natural laboratory for studying plate tectonics.Many researchers have studied the ophiolite and high pressure and ultra-high pressure metamorphic rocks in the Qilian orogen and obtained valuable achievements.However,a hot debate exists on the basement property,the distribution of ophiolite,and the boundaries of tectonic units.Large-scale high-precision aeromagnetic surveys have recently been conducted in the Qilian Orogenic belt and adjacent areas.In this study,we are trying to analysis the tectonic framework of the Qilian Orogen using 1:500,000 aeromagnetic data.The results provide geophysical perspectives for studying the structural framework and deformation of this area.According to the aeromagnetic∆T anomaly map,the central and Southern Qilian have the same magnetic anomaly feature that noticeably differs from the North Qilian Orogenic belt and the Qaidam Block.This result indicates that the central and Southern Qilian have a unified magnetic basement and differ from the North Qilian orogenic belt and Qaidam Block.The map shows the distribution of ophiolite in the North Qilian orogenic belt.Linear magnetic anomalies represent the ophiolites because the mafic–ultramafic rocks usually have high magnetic susceptibility.The ophiolite belts are continuously distributed in the western part of North Qilian orogenic belt and have a large scale.However,the scale of the ophiolite belt and the outcropping of mafic–ultramafic rocks reduces when they pass through Qilian County to the east.The results indicate differences in the evolution process between the eastern and western parts of North Qilian,with Qilian County as the transition zone.This study also systematically defines the geophysical boundaries of the Qaidam Block,Qilian Block,North Qilian Orogenic belt,and Alxa block.It is proposed that the sinistral displacement of the Altun Fault is adjusted and absorbed by the series of NE-trending faults in the Qilian orogen and merge into the Longshoushan–Gushi Fault.The extension of the North Qilian Orogenic belt is strengthened by the neotectonics movement along the shearing direction,which separated the North Qilian Orogenic belt into several segments and formed a series of northeast-trending faults.
基金support for this work, provided by the National Natural Science Foundation of China (No40872105)the Scientific Research Foundation of the North China Institute of Science Technology (NoA08002)
文摘In order to discuss the effect of tectonic stress on the structural evolution of coal, given the importance attached to High-resolution Transmission Electron Microscopy (HTEM), we investigated several aspects of material structures of high-rank Carboniferous period coal, located in the northern foreland basin of the Dabie orogenic belt in eastern China. High powered crystal lattice images of Bright Fields (BF) and Selected Area Diffraction patterns (SAD) of different types of metamorphism in coal were obtained. The results show that the Basic Structural Units (BSU) become increasingly more compact as a function of rising tem-perature and pressure. Under pressure, the local orientation of molecules is strengthened, the arrangement of BSU speeds up and the degree of order is clearly enhanced.
基金Projects 40772198 and 50678182 supported by the National Natural Science Foundation of China09-3-094 by the Research Fund for Teaching Reform in Institutes of Higher Learning,Chongqing, China
文摘In order to determine the area for oil and gas exploration in China’s north Sichuan basin,we have divided the time during which the Longmenshan foreland basin was formed into five periods,based on the sedimentary response relationship of the foreland basin to structural evolution: 1) a late Triassic Noric period;2) an early-Middle Jurassic period;3) a late Jurassic to early Cretaceous period;4) a late Cretaceous to Paleogene-Neogene period and 5) the Quaternary period. As well,we analyzed the sedimentary environment and lithologic features of every basin-forming period. The results show that there are several favorable source-reservoir-cap assemblages in our study area,making it a major region for future oil and gas exploration in China’s northern Sichuan basin.
基金This project was supported by the Coal Science Foundation of China
文摘A thrust and nappe tectonic zone with imbricate branch thrusts is developed along the southern margin of the coal-forming region of North China. This tectonic zone is tightly related to the Qinling-Dabie collision orogen in genesis and belongs to the frontal zone of a huge thrust system developed during Yanshanian episode at the northern foot of the orogen. It is pointed out that thrusting had distorted the original depositional margin of the coal-forming region and some new coal-bearing blocks would be found out in the frontal sheets and under the undulate sole thrust.
基金Supported by the National Natural Science Foundation of China(No.41172087)the Fundamental Research Funds for the Central Universities(No.CUG090102)
文摘The shape,texture,content and REE characteristics of zircons from the O2tnd-1,O3tnd-2,O3tnd-3pyroclastic rock of Tanjianshan Group on the north margin of Qaidam Basin indicate that the O2-3tndis the product of volcanism during the transitional period from ocean-land interim crust to oceanic crust.The U-Pb surface ages obtained from O3tnd-2and O3tnd-3can be divided into 9 groups,every age group coincides with the period when significant tectonic-heat event took place at Oulongbuluke micro-continental base of northern Qaidam,suggesting that the base rocks have provided materials for the formation of sedimentary and volcanic rock in O2-3tnd.The volcanic rocks of O3tnd-3formed at 440 Ma,with time gap 46 Ma to those of O1tna-1and O3tnd-3may represent the minor period that Xitieshan back-arc extension have lasted,the scale of back-arc basin that formed in Xitieshan extension may approach to 1 400 km.Based on the test of ithochemistry data for major elements and analysis of Sr isotope geochemistry for the clastic sedimentary rock in O1tna-2and O3tnd-2,the authors get the conclusion that the O1tna-2and O3tnd-2of Tanjianshan Group may form in back-arc basin environment,while the lithology difference between these two formations may reflect the changes of geodynamic processes as the diagenesis tectonic environment transformed from continental margin depression to adjacent sea basin.
基金supported by the National Basic Research Program of China(Grant Nos.2015CB856104,2009CB825006)the National Natural Science Foundation of China(Grant Nos.41472064,40672047)the Geological Investigation Project of China Geological Survey(Grant No.1212010711812)
文摘The Tongbai-Hong'an orogen is located in a key tectonic position linking the Qinling orogen to the west and the Dabie-Sulu orogen to the east. Because the orogen preserves a Paleozoic accretionary orogenic system in the north and a latest PaleozoicMesozoic collisional orogenic system in the south, it may serve as an ideal place to study the tectonic evolution between the North and South China Blocks. The available literature data in the past 20 years indicate that the tectonic processes of the Tongbai-Hong'an orogen involved four stages during the Phanerozoic:(1) Early Paleozoic(490–420 Ma) oceanic subduction, arc magmatism and arc-continent collision created a new Andean-type active continental margin on the North China Block;(2) Late Paleozoic(340–310 Ma) oceanic subduction and accretion generated separated paired metamorphic belts: a medium P/T Wuguan-Guishan complex belt in the south of the Shandan-Songpa fault and a high P/T Xiongdian eclogite belt in the northern edge of the Mesozoic HP metamorphic terrane;(3) Latest Paleozoic-Early Mesozoic(255–200 Ma) continental subduction and collision formed the Tongbai HP terrane in the west and the Hong'an HP/UHP terrane in the east as a consequence of deep subduction towards the east and syn-subduction detachment/exhumation of the down-going slab;(4) Late Mesozoic(140–120 Ma) extension, voluminous magma intrusion and tectonic extrusion led to the final exhumation of the Tongbai-Hong'an-Dabie HP/UHP terrane and the wedge-shaped architecture of the terrane narrowing towards the west. However, many open questions still remain about the details of each evolutionary stage and earlier history of the orogen. Besides an extensive study directly on the Tongbai-Hong'an orogen in the future, integrated investigation on the "soft-collisional" Qinling orogen in the west and the "hard-collisional" Dabie-Sulu orogen in the east is required to establish a general tectonic model for the whole Qinling-TongbaiHong'an-Dabie-Sulu orogenic belt.
基金supported by National Natural Science Foundation of China (Grant Nos. 41190073, 41372198 and 40825009)National Basic Research Program of China (Grant No. 2014CB440901)+1 种基金State Key Laboratory of Ore Deport Geochemistry, Chinese Academy of Sciences (Grant No. 201301)Guangzhou Institute of Geochemistry, Chinese Academy of Sciences (Grant No. GIGCAS-135-Y234 151001)
文摘High εNd(t)-εHf(t) granites are robust evidence for crustal growth. In this paper we report results of petrologic, geochronological and geochemical investigations on the Huashiban granites from the Ailaoshan tectonic zone in western Yunnan (SW China). Zircon grains separated from the two samples (10HH-119A and 10HH-120A) yield the weighted mean 206pb/238u ages of 229.9 ± 2.0 Ma and 229.3 ± 2.3 Ma, respectively, interpreted as the crystallization ages of the granites. Based on our results, in combination with the existing U-Pb geochronological data for the Ailaoshan metamorphic rocks, we propose that the Ai- laoshan Group might be a rock complex composed of the Mesoproterozoic, Neoproterozoic, Hercynian, Indosinian and Hima- layan components, rather than a part of the crystalline basement of the Yangtze block. The zircon grains show highly depleted Lu-Hf isotope compositions, with positive eHf(t) values ranging from 8.4 to 13.1. The Huashiban granites have high SiO2 (72.66 wt%-73.70 wt%), low Mg# (0.28-0.34) with A/CNK=1.01-1.05, and can be classified as peralumious high-K calc-alkaline I-type granites. A synthesis of these data indicates that the Ailaoshan tectonic zone had evolved into a post-collisional setting by the Late-Triassic (229 Ma). Genesis of the Huashiban high εNd(t)-εHf(t) granites involved into two processes: (1) underplating of the sub-arc mantle into the lower crust, and (2) remelting of the juvenile crustal materials in re- sponse to the upwelling of the asthenospheric mantle in the post-collisional setting.
基金supported by funds from the National Basic Research Program of China(Grant No.2015CB856100)the National Natural Science Foundation of China(Grant No.41221062)
文摘Crustal subduction and continental collision is the core of plate tectonics theory. Understanding the formation and evolution of continental collision orogens is a key to develop the theory of plate tectonics. Different types of subduction zones have been categorized based on the nature of subducted crust. Two types of collisional orogens, i.e. arc-continent and continent-continent collisional orogens, have been recognized based on the nature of collisional blocks and the composition of derivative rocks. Arc-continent collisional orogens contain both ancient and juvenile crustal rocks, and reworking of those rocks at the post-collisional stage generates magmatic rocks with different geochemical compositions. If an orogen is built by collision between two relatively old continental blocks, post-collisional magmatic rocks are only derived from reworking of the old crustal rocks. Collisional orogens undergo reactivation and reworking at action of lithosphere extension, with inheritance not only in the tectonic regime but also in the geochemical compositions of reworked products(i.e., magmatic rocks). In order to unravel basic principles for the evolution of continental tectonics at the post-collisional stages, it is necessary to investigate the reworking of orogenic belts in the post-collisional regime, to recognize physicochemical differences in deep continental collision zones, and to understand petrogenetic links between the nature of subducted crust and post-collisional magmatic rocks. Afterwards we are in a position to build the systematics of continental tectonics and thus to develop the plate tectonics theory.
基金financially supported by the National Natural Science Foundation of China(42102260,42172236,42072264,41902229,and 42072267)Hong Kong Research Grants Council General Research Fund(17307918)+1 种基金the Fundamental Research Funds for the Central Universities,Chang’an University,China(300102272204)Opening Foundation of State Key Laboratory of Continental Dynamics,Northwest University,China(21LCD09)。
文摘During Carboniferous time,tremendous juvenile arc crust was formed in the southern Central Asian Orogenic Belt(CAOB),although its origin remains unclear.Herein,we presented zircon U-Pb-Hf and whole-rock geochemical and Sr-Nd isotopic data for a suite of volcanic and pyroclastic rocks from the Khan-Bogd area in southern Mongolia.These Carboniferous pyroclastic rocks generally have some early Paleozoic zircons,probably derived from the granitic and sedimentary rocks of the Lake Zone and the Gobi-Altai Zone to the north,indicative of a continental arc nature.In addition,they have a main zircon U-Pb age of ca.370–330 Ma,positive Hf and Nd isotopes,and mafic-intermediate arc affinity,similar to the coeval arc magmatism.Moreover,the pyroclastic rocks of the northern area have more mafic and older volcanic components with depositional time(ca.350–370 Ma;Visean and Bashkirian stages)earlier than that in the southern area(mainly ca.350–315 Ma;Serpukhovian and Bashkirian stages).Combining a preexisting northward subduction supported by the available magnetotelluric data with a slab rollback model of the main oceanic basin of the Paleo-Asian Ocean(PAO)during Carboniferous and Triassic times,we infer that the Carboniferous arc magmatism was probably derived from a backarc ocean triggered by slab rollback.Thus,the juvenile arc volcanism of Mongolia,together with other areas(e.g.,Junggar)in the southern CAOB,represented a significant lateral accretion that terminated after the Carboniferous due to a significant contraction of the PAO.