Electrical energy consumption is growing and is necessary to improve the technologies related to energy production. We have carried out a pilot study about environmental impacts during the manufacturing process of PV ...Electrical energy consumption is growing and is necessary to improve the technologies related to energy production. We have carried out a pilot study about environmental impacts during the manufacturing process of PV (photovoltaic) modules and compared between the energy requirement for the production of PV cells and modules and generation throughout the life time of the finished good that is PV module. It was taken into account the generation of environmental aspects and impacts in the manufacture of monocrystalline silicon PV modules (consisting of three components: silicon cell, fiat tempered glass and aluminum frame), and an analysis of a grid-connected PV system using an energetic alternative in residences was considered. Results show that, this kind of renewable energy is really clean and can be considered as a way to change the energy technology.展开更多
Distinguishing a tumor from non-neoplastic tissue is a challenging task during cancer surgery. Several attempts have been made to use visible or fluorescent agents to aid in the visualization of a tumor during surgery...Distinguishing a tumor from non-neoplastic tissue is a challenging task during cancer surgery. Several attempts have been made to use visible or fluorescent agents to aid in the visualization of a tumor during surgery. We describe a novel method to delineate brain tumors, using a highly sensitive photoacoustic imaging technique that is enhanced by tumor-targeting blue nanoparticles serving as a contrast agent. Experiments on phantoms and on rat brains, ex vivo, demonstrate the high sensitivity of photoacoustic imaging in delineating tumors containing contrast agent at a concentration much lower than needed for visualization by the naked eye. The limit of detection of the system for the nanoparticles is about 0.77 μg/mL in water (equivalent to 0.84 μmol/L Coomassie Blue dye). The present exploratory study suggests that photoacoustic imaging, when used with strongly optical absorbing contrast agents, could facilitate cancer surgery intraoperatively by revealing the distribution and extent of the tumor.展开更多
文摘Electrical energy consumption is growing and is necessary to improve the technologies related to energy production. We have carried out a pilot study about environmental impacts during the manufacturing process of PV (photovoltaic) modules and compared between the energy requirement for the production of PV cells and modules and generation throughout the life time of the finished good that is PV module. It was taken into account the generation of environmental aspects and impacts in the manufacture of monocrystalline silicon PV modules (consisting of three components: silicon cell, fiat tempered glass and aluminum frame), and an analysis of a grid-connected PV system using an energetic alternative in residences was considered. Results show that, this kind of renewable energy is really clean and can be considered as a way to change the energy technology.
基金Acknowledgements This work was supported by National Institutes of Health (NIH) grant No. R33CA125297 (RK) and National Natural Science Foundation of China (NSFC) grant No. 11028408 (XW). We thank Dr. Z. Xie and Dr, J. Rajian for their help during photoacoustic imaging. We also like to extend our sincere thanks to Dr. M. Nie for his help during nanoparticle synthesis. We would also like to thank Mr. Dah-Luen Huang for developing the BTW in the rats.
文摘Distinguishing a tumor from non-neoplastic tissue is a challenging task during cancer surgery. Several attempts have been made to use visible or fluorescent agents to aid in the visualization of a tumor during surgery. We describe a novel method to delineate brain tumors, using a highly sensitive photoacoustic imaging technique that is enhanced by tumor-targeting blue nanoparticles serving as a contrast agent. Experiments on phantoms and on rat brains, ex vivo, demonstrate the high sensitivity of photoacoustic imaging in delineating tumors containing contrast agent at a concentration much lower than needed for visualization by the naked eye. The limit of detection of the system for the nanoparticles is about 0.77 μg/mL in water (equivalent to 0.84 μmol/L Coomassie Blue dye). The present exploratory study suggests that photoacoustic imaging, when used with strongly optical absorbing contrast agents, could facilitate cancer surgery intraoperatively by revealing the distribution and extent of the tumor.