The planted forest area and carbon sequestration have increased significantly in China,because of large-scale reforestation and afforestation in the past decades.In this study,we developed an age-based volume-to-bioma...The planted forest area and carbon sequestration have increased significantly in China,because of large-scale reforestation and afforestation in the past decades.In this study,we developed an age-based volume-to-biomass method to estimate the carbon storage by planted forests in China in the period of 1973-2003 based on the data from 1209 field plots and national forest inventories.The results show that the total carbon storage of planted forests was 0.7743 Pg C in 1999-2003,increased by 3.08 times since the early 1970s.The carbon density of planted forests varied from 10.6594 Mg/ha to 23.9760 Mg/ha and increased by 13.3166 Mg/ha from 1973-1976 to 1999-2003.Since the early 1970s,the planted forests in China have been always a carbon sink,and the annual rate of carbon sequestration was 0.0217 Pg C/yr.The carbon storage and densities of planted forests varied greatly in space and time.The carbon storage of Middle South China was in the lead in all regions,which accounted for 23%-36% of national carbon storage.While higher C densities (from 17.79 Mg/ha to 26.05 Mg/ha) were usually found in Northeast China.The planted forests in China potentially have a high carbon sequestration since a large part of them are becoming mature and afforestation continues to grow.展开更多
The Paris Agreement introduced a 1.5 ℃ target to control the rise in global temperature, but clear arrangements for feasible implementation pathways were not made. Achieving the 1.5 ℃ target imposes high requirement...The Paris Agreement introduced a 1.5 ℃ target to control the rise in global temperature, but clear arrangements for feasible implementation pathways were not made. Achieving the 1.5 ℃ target imposes high requirements on global emission reduction. Nationally Determined Con- tributions of all Parties are far from the 1.5 ℃ target, and conventional emission reduction technologies and policies will also have difficulty in fulfilling this task. In this context, geoengineering is gaining interest in the international arena. The Paris Agreement includes afforestation, carbon capture, utilization and storage, and negative emission technologies such as bio-energy with carbon capture and store. All of these techniques are CO2 removal technologies that belong to geoengineering. Solar radiation management, which is highly controversial, has also attracted increased attention in recent years. Although the outline of the IPCC Special Report on 1.5 ℃ does not include a specific section on geoengineering issues yet, geoengineering is an unconventional technical option that cannot be avoided in research and discussions on impact assessment, technical options, ethics, and international governance under the 1.5 ℃ target. On the basis of analyzing and discussing abovementioned issues, this paper proposes several policy suggestions for China to strengthen research on and response to geoengineering.展开更多
基金Under the auspices of National Natural Science Foundation of China (No.40601079)National Key Project of Scientific and Technical Supporting Programs (No.2006BAC08B03,2008BAC34B06)
文摘The planted forest area and carbon sequestration have increased significantly in China,because of large-scale reforestation and afforestation in the past decades.In this study,we developed an age-based volume-to-biomass method to estimate the carbon storage by planted forests in China in the period of 1973-2003 based on the data from 1209 field plots and national forest inventories.The results show that the total carbon storage of planted forests was 0.7743 Pg C in 1999-2003,increased by 3.08 times since the early 1970s.The carbon density of planted forests varied from 10.6594 Mg/ha to 23.9760 Mg/ha and increased by 13.3166 Mg/ha from 1973-1976 to 1999-2003.Since the early 1970s,the planted forests in China have been always a carbon sink,and the annual rate of carbon sequestration was 0.0217 Pg C/yr.The carbon storage and densities of planted forests varied greatly in space and time.The carbon storage of Middle South China was in the lead in all regions,which accounted for 23%-36% of national carbon storage.While higher C densities (from 17.79 Mg/ha to 26.05 Mg/ha) were usually found in Northeast China.The planted forests in China potentially have a high carbon sequestration since a large part of them are becoming mature and afforestation continues to grow.
文摘The Paris Agreement introduced a 1.5 ℃ target to control the rise in global temperature, but clear arrangements for feasible implementation pathways were not made. Achieving the 1.5 ℃ target imposes high requirements on global emission reduction. Nationally Determined Con- tributions of all Parties are far from the 1.5 ℃ target, and conventional emission reduction technologies and policies will also have difficulty in fulfilling this task. In this context, geoengineering is gaining interest in the international arena. The Paris Agreement includes afforestation, carbon capture, utilization and storage, and negative emission technologies such as bio-energy with carbon capture and store. All of these techniques are CO2 removal technologies that belong to geoengineering. Solar radiation management, which is highly controversial, has also attracted increased attention in recent years. Although the outline of the IPCC Special Report on 1.5 ℃ does not include a specific section on geoengineering issues yet, geoengineering is an unconventional technical option that cannot be avoided in research and discussions on impact assessment, technical options, ethics, and international governance under the 1.5 ℃ target. On the basis of analyzing and discussing abovementioned issues, this paper proposes several policy suggestions for China to strengthen research on and response to geoengineering.