期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
煤矿安全监控系统逻辑控制自动检测装置设计 被引量:6
1
作者 陈向飞 《工矿自动化》 北大核心 2022年第6期154-158,共5页
煤矿安全监控系统逻辑控制检测包括控制(断电、闭锁)是否正确执行和控制执行时间是否达标两项。由于不同厂家的监控系统通信机制、通信协议各不相同,难以实现系统逻辑控制功能标准化检测,且人工检测效率低、误差大。为解决上述问题,在... 煤矿安全监控系统逻辑控制检测包括控制(断电、闭锁)是否正确执行和控制执行时间是否达标两项。由于不同厂家的监控系统通信机制、通信协议各不相同,难以实现系统逻辑控制功能标准化检测,且人工检测效率低、误差大。为解决上述问题,在分析行业标准和安标检测要求的基础上,设计了一种煤矿安全监控系统逻辑控制自动检测装置。该装置不受通信协议及总线形式限制,通过串口通信方式控制多台传感器发出闭锁信号,同时通过I/O接口采集系统逻辑控制执行结果(断电器是否断电),记录闭锁信号发生时刻及逻辑控制执行结果发生时刻,从而判定系统逻辑控制执行时间,并在每条逻辑控制执行之后恢复各传感器及断电器到初始状态。测试结果表明:该装置能可靠、准确地检测控制执行时间;当测试近300条控制逻辑时,自动检测时间约为2 h,提高了检测效率。 展开更多
关键词 煤矿安全监控系统 逻辑控制检测 断电 甲烷风电闭锁 煤与瓦斯突出闭锁 甲烷超限闭锁
下载PDF
NIPAD: a non-invasive power-based anomaly detection scheme for programmable logic controllers 被引量:4
2
作者 Yu-jun XIAO Wen-yuan XU +2 位作者 Zhen-hua JIA Zhuo-ran MA Dong-lian QI 《Frontiers of Information Technology & Electronic Engineering》 SCIE EI CSCD 2017年第4期519-534,共16页
Industrial control systems (ICSs) are widely used in critical infrastructures, making them popular targets for attacks to cause catastrophic physical damage. As one of the most critical components in ICSs, the progr... Industrial control systems (ICSs) are widely used in critical infrastructures, making them popular targets for attacks to cause catastrophic physical damage. As one of the most critical components in ICSs, the programmable logic controller (PLC) controls the actuators directly. A PLC executing a malicious program can cause significant property loss or even casualties. The number of attacks targeted at PLCs has increased noticeably over the last few years, exposing the vulnerability of the PLC and the importance of PLC protection. Unfortunately, PLCs cannot be protected by traditional intrusion detection systems or antivirus software. Thus, an effective method for PLC protection is yet to be designed. Motivated by these concerns, we propose a non-invasive power- based anomaly detection scheme for PLCs. The basic idea is to detect malicious software execution in a PLC through analyzing its power consumption, which is measured by inserting a shunt resistor in series with the CPU in a PLC while it is executing instructions. To analyze the power measurements, we extract a discriminative feature set from the power trace, and then train a long short-term memory (LSTM) neural network with the features of normal samples to predict the next time step of a normal sample. Finally, an abnormal sample is identified through comparing the predicted sample and the actual sample. The advantages of our method are that it requires no software modification on the original system and is able to detect unknown attacks effectively. The method is evaluated on a lab testbed, and for a trojan attack whose difference from the normal program is around 0.63%, the detection accuracy reaches 99.83%. 展开更多
关键词 Industrial control system Programmable logic controller Side-channel Anomaly detection Long short-term memory neural networks
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部