A tool-wear monitoring system for metal turning operations is presented based on the combinative application of fuzzy logic and unsupervised neural network. A group of self-organizing map (SOM) neural networks is es...A tool-wear monitoring system for metal turning operations is presented based on the combinative application of fuzzy logic and unsupervised neural network. A group of self-organizing map (SOM) neural networks is established based on the typical cutting condition combinations, and each of networks is corresponding to a typical cutting condition. For a specifie cutting condition, the fuzzy logic method is used to select an optimum trained SOM network. The proposed monitoring system, ealled the Fuzzy-SOM-TWC, is used to classify tool states based on the in-time measurement of force, aeoustic emission(AE), and motor eurrent signals. An approximate 98%--100% correct classification of tool-wear status is obtained by testing the system with a series data samples under freely selected cutting conditions.展开更多
A virtual reconfigurable architecture(VRA)-based evolvable hardware is proposed for automatic synthesis of combinational logic circuits at gate-level.The proposed VRA is implemented by a Celoxica RC1000 peripheral com...A virtual reconfigurable architecture(VRA)-based evolvable hardware is proposed for automatic synthesis of combinational logic circuits at gate-level.The proposed VRA is implemented by a Celoxica RC1000 peripheral component interconnect(PCI)board with an Xilinx Virtex xcv2000E field programmable gate array(FPGA).To improve the quality of the evolved circuits,the VRA works through a two-stage evolution: finding a functional circuit and minimizing the number of logic gates used in a feasible circuit.To optimize the algorithm performance in the two-stage evolutionary process and set free the user from the time-consuming process of mutation parameter tuning,a self-adaptive mutation rate control(SAMRC)scheme is introduced.In the evolutionary process,the mutation rate control parameters are encoded as additional genes in the chromosome and also undergo evolutionary operations.The efficiency of the proposed methodology is tested with the evolutions of a 4-bit even parity function,a 2-bit multiplier,and a 3-bit multiplier.The obtained results demonstrate that our scheme improves the evolutionary design of combinational logic circuits in terms of quality of the evolved circuit as well as the computational effort,when compared to the existing evolvable hardware approaches.展开更多
In this paper,we propose a hybrid power model that includes the power consumption of not only the registers but also part of the combinational logic.By doing knownkey analysis with this hybrid model,power side-channel...In this paper,we propose a hybrid power model that includes the power consumption of not only the registers but also part of the combinational logic.By doing knownkey analysis with this hybrid model,power side-channel leakage caused by correct keys can be detected.In experiment,PRINTcipher and DES algorithms were chosen as analysis targets and combinational logic s-box unit was selected to build power template.The analysis results showed the signal-to-noise ratio(SNR) power consumption increase of more than 20%after considering s-box's power consumption so that the information of keys can be obtained with just half number of power traces.In addition,the side channel-leakage detection capability of our method also shows better effectiveness that can identify the correct keys.展开更多
By analyzing the structures of circuits,a novel approach for signal probability estimation of very large-scale integration(VLSI)based on the improved weighted averaging algorithm(IWAA)is proposed.Considering the failu...By analyzing the structures of circuits,a novel approach for signal probability estimation of very large-scale integration(VLSI)based on the improved weighted averaging algorithm(IWAA)is proposed.Considering the failure probability of the gate,first,the first reconvergent fan-ins corresponding to the reconvergent fan-outs were identified to locate the important signal correlation nodes based on the principle of homologous signal convergence.Secondly,the reconvergent fan-in nodes of the multiple reconverging structure in the circuit were identified by the sensitization path to determine the interference sources to the signal probability calculation.Then,the weighted signal probability was calculated by combining the weighted average approach to correct the signal probability.Finally,the reconvergent fan-out was quantified by the mixed-calculation strategy of signal probability to reduce the impact of multiple reconvergent fan-outs on the accuracy.Simulation results on ISCAS85 benchmarks circuits show that the proposed method has approximate linear time-space consumption with the increase in the number of the gate,and its accuracy is 4.2%higher than that of the IWAA.展开更多
基金Supported by the International Science and Technology Cooperation Project(2008DFA71750)the National Key Technology R&D Program(2008BAF32B00)~~
文摘A tool-wear monitoring system for metal turning operations is presented based on the combinative application of fuzzy logic and unsupervised neural network. A group of self-organizing map (SOM) neural networks is established based on the typical cutting condition combinations, and each of networks is corresponding to a typical cutting condition. For a specifie cutting condition, the fuzzy logic method is used to select an optimum trained SOM network. The proposed monitoring system, ealled the Fuzzy-SOM-TWC, is used to classify tool states based on the in-time measurement of force, aeoustic emission(AE), and motor eurrent signals. An approximate 98%--100% correct classification of tool-wear status is obtained by testing the system with a series data samples under freely selected cutting conditions.
基金Projects(61203308,61309014)supported by the National Natural Science Foundation of China
文摘A virtual reconfigurable architecture(VRA)-based evolvable hardware is proposed for automatic synthesis of combinational logic circuits at gate-level.The proposed VRA is implemented by a Celoxica RC1000 peripheral component interconnect(PCI)board with an Xilinx Virtex xcv2000E field programmable gate array(FPGA).To improve the quality of the evolved circuits,the VRA works through a two-stage evolution: finding a functional circuit and minimizing the number of logic gates used in a feasible circuit.To optimize the algorithm performance in the two-stage evolutionary process and set free the user from the time-consuming process of mutation parameter tuning,a self-adaptive mutation rate control(SAMRC)scheme is introduced.In the evolutionary process,the mutation rate control parameters are encoded as additional genes in the chromosome and also undergo evolutionary operations.The efficiency of the proposed methodology is tested with the evolutions of a 4-bit even parity function,a 2-bit multiplier,and a 3-bit multiplier.The obtained results demonstrate that our scheme improves the evolutionary design of combinational logic circuits in terms of quality of the evolved circuit as well as the computational effort,when compared to the existing evolvable hardware approaches.
基金supported by Major State Basic Research Development Program(No. 2013CB338004)National Natural Science Foundation of China(No.61402286, 61472250,61472249,61202372)+1 种基金National Science and Technology Major Project of the Ministry of Science and Technology of China (No.2014ZX01032401-001)Plan of Action for the Innovation of Science and Technology of Shanghai Municipal Science and Technology Commission(No.14511100300)
文摘In this paper,we propose a hybrid power model that includes the power consumption of not only the registers but also part of the combinational logic.By doing knownkey analysis with this hybrid model,power side-channel leakage caused by correct keys can be detected.In experiment,PRINTcipher and DES algorithms were chosen as analysis targets and combinational logic s-box unit was selected to build power template.The analysis results showed the signal-to-noise ratio(SNR) power consumption increase of more than 20%after considering s-box's power consumption so that the information of keys can be obtained with just half number of power traces.In addition,the side channel-leakage detection capability of our method also shows better effectiveness that can identify the correct keys.
基金The National Natural Science Foundation of China(No.61502422)the Natural Science Foundation of Zhejiang Province(No.LY18F020028,LQ15F020006)the Natural Science Foundation of Zhejiang University of Technology(No.2014XY007)
文摘By analyzing the structures of circuits,a novel approach for signal probability estimation of very large-scale integration(VLSI)based on the improved weighted averaging algorithm(IWAA)is proposed.Considering the failure probability of the gate,first,the first reconvergent fan-ins corresponding to the reconvergent fan-outs were identified to locate the important signal correlation nodes based on the principle of homologous signal convergence.Secondly,the reconvergent fan-in nodes of the multiple reconverging structure in the circuit were identified by the sensitization path to determine the interference sources to the signal probability calculation.Then,the weighted signal probability was calculated by combining the weighted average approach to correct the signal probability.Finally,the reconvergent fan-out was quantified by the mixed-calculation strategy of signal probability to reduce the impact of multiple reconvergent fan-outs on the accuracy.Simulation results on ISCAS85 benchmarks circuits show that the proposed method has approximate linear time-space consumption with the increase in the number of the gate,and its accuracy is 4.2%higher than that of the IWAA.