期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
ℓ1−ℓ1双范数的最优下边界回归模型辨识
1
作者 刘小雍 叶振环 《智能系统学报》 CSCD 北大核心 2020年第5期934-942,共9页
考虑到来自传感器测量数据、模型结构以及参数的不确定性等因素,建模由这些因素导致的下边界模型尤为重要。通过将结构风险最小化理论与逼近误差最小化思想相结合,提出了ℓ1−ℓ1回归模型建模方法。首先,确定满足下边界回归模型的约束条件... 考虑到来自传感器测量数据、模型结构以及参数的不确定性等因素,建模由这些因素导致的下边界模型尤为重要。通过将结构风险最小化理论与逼近误差最小化思想相结合,提出了ℓ1−ℓ1回归模型建模方法。首先,确定满足下边界回归模型的约束条件。其次,将结构风险的ℓ2范数转化为简单的ℓ1范数优化问题,并将回归模型与实际测量数据之间的逼近误差的ℓ1范数融合到结构风险的ℓ1范数优化问题,再应用较简单的线性规划对双范数的优化问题进行求解获取模型参数。最后,通过来自测量数据以及模型参数不确定性的实验分析,论证了提出方法的最优性,体现在:下边界模型的建模精度通过逼近误差的ℓ1范数得到保证;模型结构复杂性在结构风险的ℓ1范数优化条件下得到有效控制,进而提高其泛化性能。 展开更多
关键词 ℓ1范数的结构风险最小化 逼近误差的ℓ1范数 下边界回归模型 泛化性能 建模精度 最优性 线性规划
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部