期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
一类非线性积分方程正的遍历解的存在性
1
作者 姚慧丽 《哈尔滨理工大学学报》 CAS 2005年第3期38-39,42,共3页
利用不动点理论,给出了一类非线性积分方程正的遍历解存在的充分条件.
关键词 积分方程 遍历解 不动点理论
下载PDF
遍历性和它在积分方程解方面的应用
2
作者 姚慧丽 张传义 《黑龙江大学自然科学学报》 CAS 2001年第2期9-13,共5页
在遍历性的假设条件下讨论了一类积分方程遍历性解的存在性。
关键词 延迟积分方程 遍历解 投影度量 概周期 遍历 遍历函数
下载PDF
多维门限GARCH模型的平稳遍历性
3
作者 张若东 孙王杰 刘继春 《东北师大学报(自然科学版)》 CAS CSCD 北大核心 2003年第1期31-34,共4页
 给出了多维双门限自回归GARCH模型;该模型是一维双门限自回归GARCH模型在多维情况的一种推广,并且讨论了多维双门限自回归GARCH模型存在严平稳遍历性的充分必要条件.
关键词 多维门限GARCH模型 严平稳遍历 非线性时间序列 门限自回归模型 严平稳遍历解
下载PDF
Robot coverage algorithm under rectangular decomposition environment
4
作者 张赤斌 颜肖龙 《Journal of Southeast University(English Edition)》 EI CAS 2008年第2期188-191,共4页
The environment modeling algorithm named rectangular decomposition, which is composed of cellular nodes and interleaving networks, is proposed. The principle of environment modeling is to divide the environment into i... The environment modeling algorithm named rectangular decomposition, which is composed of cellular nodes and interleaving networks, is proposed. The principle of environment modeling is to divide the environment into individual square sub-areas. Each sub-area is orientated by the central point of the sub-areas called a node. The rectangular map based on the square map can enlarge the square area side size to increase the coverage efficiency in the case of there being an adjacent obstacle. Based on this algorithm, a new coverage algorithm, which includes global path planning and local path planning, is introduced. In the global path planning, uncovered subspaces are found by using a special rule. A one-dimensional array P, which is used to obtain the searching priority of node in every direction, is defined as the search rule. The array P includes the condition of coverage towards the adjacent cells, the condition of connectivity and the priorities defined by the user in all eight directions. In the local path planning, every sub-area is covered by using template models according to the shape of the environment. The simulation experiments show that the coverage algorithm is simple, efficient and adapted for complex two- dimensional environments. 展开更多
关键词 path planning complete coverage algorithm rectangular decomposition
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部